×

zbMATH — the first resource for mathematics

Dual finite element analysis for semi-coercive unilateral boundary value problems. (English) Zbl 0407.65048

MSC:
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
35J25 Boundary value problems for second-order elliptic equations
PDF BibTeX XML Cite
Full Text: EuDML
References:
[1] Hlaváček I.: Dual finite element analysis for unilateral boundary value problems. Apl. mat, 22(1977), 14-51.
[2] Hlaváček I.: Dual finite element analysis for elliptic problems with obstacles on the boundary I. Apl. mat. 22 (1977), 244-255
[3] Mosco U., Strang G.: One-sided approximations and variational inequalities. Bull. Amer. Math. Soc. 80 (1974), 308-312. · Zbl 0278.35026 · doi:10.1090/S0002-9904-1974-13477-4
[4] Duvaut G., Lions J. L.: Les inéquations en mécanique et en physique. Dunod, Paris 1972. · Zbl 0298.73001
[5] Haslinger J., Hlaváček I.: Convergence of a finite element method based on the dual variational formulation. Apl. mat. 21 (1976), 43 - 65. · Zbl 0326.35020 · eudml:14942
[6] Céa J.: Optimisation, théorie et algorithmes. Dunod, Paris 1971. · Zbl 0211.17402
[7] Falk R. S.: Error estimates for the approximation of a class of variational inequalities. Math. Comp. 28 (1974), 963-971. · Zbl 0297.65061 · doi:10.2307/2005358
[8] Fichera G.: Boundary value problems of elasticity with unilateral constraints. Encycl. of Physics (ed. S. Flügge), vol. VI a/2. Springer, Berlin 1972.
[9] Nečas J.: Les méthodes directes en théorie des équations elliptiques. Academia, Prague 1967. · Zbl 1225.35003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.