Mifflin, Robert A stable method for solving certain constrained least squares problems. (English) Zbl 0407.90065 Math. Program. 16, 141-158 (1979). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 15 Documents MSC: 90C20 Quadratic programming 90C99 Mathematical programming Keywords:Feasible Descent Algorithm; Constrained Least Squares Problem; Quadratic Programming × Cite Format Result Cite Review PDF Full Text: DOI References: [1] J.W. Daniel, W.B. Gragg, L. Kaufman and G.W. Stewart, ”Reorthogonalization and stable algorithms for updating the Gram-Schmidt QR factorization”,Mathematics of Computation 30 (1976) 772–795. · Zbl 0345.65021 [2] G.H. Golub and M.A. Saunders, ”Linear least squares and quadratic programming”, in: J. Abadie, ed.,Integer and nonlinear programming (North-Holland, Amsterdam, 1970) pp. 229–256. · Zbl 0334.90034 [3] C.L. Lawson and R.J. Hanson,Solving least squares problems (Prentice Hall, Englewood Cliffs, NJ, 1974). · Zbl 0860.65028 [4] C. Lemarechal, ”Combining Kelley’s and conjugate gradient methods”, Abstracts, 9th International symposium on mathematical programming, Budapest (1976). [5] K. Schittkowski and J. Stoer, ”A factorization method for constrained least squares problems with data changes, part 1: theory”, Institut für Angewandte Mathematik und Statistik der Universität Würzburg, Preprint No. 20 (1976). · Zbl 0378.65026 [6] K. Schittkowski and P. Zimmerman, ”A factorization method for constrained least squares problems with data changes, part 2: numerical tests, comparisons and ALGOL codes”, Institut für Angewandte Mathematik und Statistik der Universität Würzburg, Preprint No. 30 (1977). [7] J. Stoer, ”On the numerical solution of constrained least squares problems”,SIAM Journal on Numerical Analysis 8 (1971) 382–411. · Zbl 0219.90039 · doi:10.1137/0708038 [8] P. Wolfe, ”Finding the nearest point in a polytope”,Mathematical Programming 11 (1976) 128–149. · Zbl 0352.90046 · doi:10.1007/BF01580381 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.