zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Multidimensional nonlinear diffusion arising in population genetics. (English) Zbl 0407.92014

MSC:
92D25Population dynamics (general)
35K55Nonlinear parabolic equations
WorldCat.org
Full Text: DOI
References:
[1] Aronson, D. G.; Weinberger, H. F.: Nonlinear diffusion in population genetics, combustion, and nerve propagation. Partial differential equations and related topics, lecture notes in mathematics 446, 5-49 (1975)
[2] Chafee, N.: A stability analysis for a semilinear parabolic partial differential equation. J. differential eqs. 15, 522-540 (1974) · Zbl 0271.35043
[3] Fisher, R. A.: The advance of advantageous genes. Ann. of eugenics 7, 355-369 (1937) · Zbl 63.1111.04
[4] Friedman, A.: Partial differential equations of parabolic type. (1964) · Zbl 0144.34903
[5] Fujita, H.: On the blowing up of solutions of the Cauchy problem for $ut = {\delta}u + u1 + {\alpha}$. J. fac. Sci. univ. Tokyo, (I) 13, 109-124 (1966) · Zbl 0163.34002
[6] . Amer. math. Soc. trans. 29, 295-381 (1963)
[7] Hayakawa, K.: On nonexistence of global solutions of some semilinear parabolic equations. Proc. Japan acad. 49, 503-505 (1973) · Zbl 0281.35039
[8] . Soviet math. Dokl. 1, 533-536 (1960)
[9] . Soviet math. Dokl. 2, 48-51 (1961)
[10] Kanel’, Ja.I: Stabilization of solutions of the Cauchy problem for equations encountered in combustion theory. Mat. sbornik 59, No. 101, 245-288 (1962) · Zbl 0152.10302
[11] Kanel’, Ja.I: On the stability of solutions of the equations of combustion theory for finite initial functions. Mat. sbornik 65, No. 107, 398-413 (1964)
[12] Kobayashi, K.; Sirao, T.; Tanaka, H.: On the growing up problem for semilinear heat equations. J. math. Soc. Japan 29, 407-424 (1977) · Zbl 0353.35057
[13] Kolmogoroff, A.; Petrovsky, I.; Piscounoff, N.: Étude de l’équations de la diffusion avec croissance de la quantité de matière et son application a un problème biologique. Bull. univ. Moscow, ser. Internat., sec. A 1, 1-25 (1937) · Zbl 0018.32106
[14] Petrovski, I. G.: Ordinary differential equations. (1973)
[15] Protter, M. H.; Weinberger, H. F.: Maximum principles in differential equations. (1967) · Zbl 0153.13602
[16] T. Sirao, On the growing up problem for semilinear heat equations, Kokyuroku of the Inst. of Math., Anal., Kyoto Univ., in press. · Zbl 0353.35057