zbMATH — the first resource for mathematics

GaussFit - a system for least squares and robust estimation. (English) Zbl 0658.65150
GaussFit is a new computer program for solving least squares and robust estimation problems. GaussFit is written in C computer language and especially designed to make it easy to specify complex reduction models. GaussFit uses orthogonal transformations (Householder transformations) instead of normal equations to solve the mean squares problems. A special feature of GaussFit is that it manipulates actually complex structures containing the value of an expression plus all of the relevant partial derivatives which are calculated by means of analytic formulas and not by numerical differentiation. GaussFit provides robust estimation.
Reviewer: G.Jumarie
65C99 Probabilistic methods, stochastic differential equations
62J05 Linear regression; mixed models
65G50 Roundoff error
Full Text: DOI
[1] Barrodale, I. and Roberts, F. D. K.: 1978,SIAM J. Numer. Anal. 15, 603. · Zbl 0387.65027 · doi:10.1137/0715040
[2] Barnes, T. G., Moffett, T. J., Jefferys, W. H. and Hawley, S. L.: 1987, ?The Surface-Brightness Relation and the Slope of the P-L Relation,? Paper presented at the Vancouver Meeting of the American Astronomical Society.
[3] Britt, H. I. and Luecke, R. H.: 1973,Technometrics 15, 233 · doi:10.1080/00401706.1973.10489037
[4] Deming, W. E.: 1938,Statistical Adjustment of Data, John Wiley and Sons, New York. · Zbl 0060.31504
[5] Holland, Paul W. and Welsch, Roy E.: 1977,Commun. Statist.-Theor. Meth. A6, 813. · Zbl 0376.62035 · doi:10.1080/03610927708827533
[6] Huber, P. J.: 1981,Robust Statistics, John Wiley and Sons, New York. · Zbl 0536.62025
[7] Jefferys, W. H.: 1980,Astron. J. 85, 177. · doi:10.1086/112659
[8] Jefferys, W. H.: 1981,Astron. J. 86, 149. · doi:10.1086/112868
[9] Jefferys, W. H. and Feo, J.: 1986, inAstrometric Techniques, H. K. Eichhorn, and R. J. Leacock (eds.), 637?641.
[10] Kernighan, B. W. and Ritchie, D. M.: 1978,The C Programming Language, Prentice-Hall, Englewood Cliffs, NJ. · Zbl 0701.68014
[11] Lybanon, Matthew: 1984,Am. J. Physics 52, 22. · doi:10.1119/1.13822
[12] Rey, William J. J.: 1983,Introduction to Robust and Quasi-Robust Statistical Methods, Springer-Verlag, New York. · Zbl 0525.62040
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.