×

Generalization of some known properties of Cantor set. (English) Zbl 0408.04001


MSC:

03E15 Descriptive set theory

References:

[1] Bose Majumdar N. C.: On the distance set of the Cantor middle third set III. Amer. Math. Monthly 72 (1965), pp. 725-729. · Zbl 0154.05403 · doi:10.2307/2314413
[2] Dasgupta M.: On some properties of the Cantor set and the construction of a class of sets with Cantor set properties. Czechoslovak Mathematical Journal 24 (99), 1974 Praha, pp. 416-423. · Zbl 0309.28005
[3] Ganguly D. K., Bose Majumdar N. C: On some functions connected with Cantor set. Bull. Math, de la See. Sci. Math, de la R. S. R. · Zbl 0368.28001
[4] Kinney J. R.: A thin set of lines. Israel J. Math. 8 (1970), pp. 97- 102. · Zbl 0213.07605 · doi:10.1007/BF02771304
[5] Randolph J. F.: Distance between points of the Cantor set. Amer. Math. Monthly 47 (1940), pp. 549-551. · JFM 66.0203.02 · doi:10.2307/2303836
[6] Steinhaus H.: Nowa vlastnose mnogosci G. Cantora. Wektor (1917), pp. 105-107.
[7] Šalát T.: On the distance set of linear discontinuum I. (Russian), Časopis pro pěstování matematiky 87 (1962), pp. 4-16.
[8] Utz W. R.: The distance set for the Cantor discontinuum. Amer. Math. Monthly 58 (1951) pp. 407-408. · Zbl 0043.05402 · doi:10.2307/2306554
[9] Hobson E. W.: The theorey of function of a real variable and the theory of Fourier series. Vol. I, Dover Publications, Inc. p. 243.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.