×

The analytic principle of the large sieve. (English) Zbl 0408.10033


MSC:

11N35 Sieves
11-02 Research exposition (monographs, survey articles) pertaining to number theory
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Robert A. Adams, Sobolev spaces, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1975. Pure and Applied Mathematics, Vol. 65. · Zbl 0314.46030
[2] M. B. Barban, The density of zeros of Dirichlet L-series and the problem of the addition of primes and almost primes, Dokl. Akad. Nauk UzSSR 1 (1963), 9-10. (Russian) · Zbl 0146.27401
[3] M. B. Barban, The ”density” of the zeros of Dirichlet \?-series and the problem of the sum of primes and ”near primes”, Mat. Sb. (N.S.) 61 (103) (1963), 418 – 425 (Russian). · Zbl 0127.26903
[4] M. B. Barban, The ”large sieve” method and its application to number theory, Uspehi Mat. Nauk 21 (1966), no. 1, 51 – 102 (Russian).
[5] Richard Bellman, Almost orthogonal series, Bull. Amer. Math. Soc. 50 (1944), 517 – 519. · Zbl 0060.17109
[6] R. P. Boas Jr., A general moment problem, Amer. J. Math. 63 (1941), 361 – 370. · JFM 67.0423.01
[7] E. Bombieri, On the large sieve, Mathematika 12 (1965), 201 – 225. · Zbl 0136.33004
[8] Enrico Bombieri, Nuovi metodi e nuovi risultati nella teoria dei numeri, Boll. Un. Mat. Ital. (4) 1 (1968), 96 – 106 (Italian). · Zbl 0157.09402
[9] Enrico Bombieri, On a theorem of van Lint and Richert, Symposia Mathematica, Vol. IV (INDAM, Rome, 1968/69) Academic Press, London, 1970, pp. 175 – 180.
[10] E. Bombieri, A note on the large sieve, Acta Arith. 18 (1971), 401 – 404. · Zbl 0219.10055
[11] E. Bombieri, On large sieve inequalities and their applications, Proceedings of the International Conference Number Theory (Moscow, 1971), 1973, pp. 251 – 256, 266 (English, with Russian summary).
[12] Enrico Bombieri, Le grand crible dans la théorie analytique des nombres, Société Mathématique de France, Paris, 1974 (French). Avec une sommaire en anglais; Astérisque, No. 18. · Zbl 0292.10035
[13] E. Bombieri and H. Davenport, Small differences between prime numbers, Proc. Roy. Soc. Ser. A 293 (1966), 1 – 18. · Zbl 0151.04201
[14] E. Bombieri and H. Davenport, On the large sieve method, Number Theory and Analysis (Papers in Honor of Edmund Landau), Plenum, New York, 1969, pp. 9 – 22.
[15] E. Bombieri and H. Davenport, Some inequalities involving trigonometrical polynomials, Ann. Scuola Norm. Sup. Pisa (3) 23 (1969), 223 – 241. · Zbl 0186.08201
[16] D. A. Burgess, The average of the least primitive root modulo \?², Acta Arith. 18 (1971), 263 – 271. · Zbl 0224.10048
[17] Chen Jing-run, On the representation of a large even integer as the sum of a prime and the product of at most two primes, Kexue Tongbao 17 (1966), 385 – 386.
[18] Jing Run Chen, On the representation of a larger even integer as the sum of a prime and the product of at most two primes, Sci. Sinica 16 (1973), 157 – 176. · Zbl 0319.10056
[19] Harold Davenport, Multiplicative number theory, Lectures given at the University of Michigan, Winter Term, vol. 1966, Markham Publishing Co., Chicago, Ill., 1967. · Zbl 0159.06303
[20] H. Davenport, The zeros of trigonometrical polynomials, Mathematika 19 (1972), 88 – 90. · Zbl 0252.10037
[21] H. Davenport and H. Halberstam, The values of a trigonometrical polynomial at well spaced points, Mathematika 13 (1966), 91 – 96. · Zbl 0171.00902
[22] H. Davenport and H. Halberstam, Primes in arithmetic progressions, Michigan Math. J. 13 (1966), 485 – 489. · Zbl 0171.00901
[23] P. D. T. A. Elliott, The Turan-Kubilius inequality, and a limitation theorem for the large sieve, Amer. J. Math. 92 (1970), 293 – 300. · Zbl 0213.33101
[24] P. D. T. A. Elliott, On inequalities of large sieve type, Acta Arith. 18 (1971), 405 – 422. · Zbl 0224.10046
[25] P. D. T. A. Elliott, On connections between the Turán-Kubilius inequality and the large sieve: some applications, Analytic number theory (Proc. Sympos. Pure Math., Vol. XXIV, St. Louis Univ., St. Louis, Mo., 1972) Amer. Math. Soc., Providence, R.I., 1973, pp. 77 – 82.
[26] Pál Erdős, Remarks on number theory. V. Extremal problems in number theory. II, Mat. Lapok 17 (1966), 135 – 155 (Hungarian, with English summary). · Zbl 0146.27201
[27] P. Erdős and A. Rényi, Some remarks on the large sieve of Yu. V. Linnik, Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 11 (1968), 3 – 13. · Zbl 0207.35901
[28] M. Forti and C. Viola, On large sieve type estimates for the Dirichlet series operator, Analytic number theory (Proc. Sympos. Pure Math., Vol. XXIV, St. Louis Univ., St. Louis, Mo., 1972) Amer. Math. Soc., Providence, R.I., 1973, pp. 31 – 49. · Zbl 0268.10027
[29] P. X. Gallagher, The large sieve, Mathematika 14 (1967), 14 – 20. · Zbl 0163.04401
[30] P. X. Gallagher, Bombieri’s mean value theorem, Mathematika 15 (1968), 1 – 6. · Zbl 0174.08103
[31] P. X. Gallagher, A large sieve density estimate near \?=1, Invent. Math. 11 (1970), 329 – 339. · Zbl 0219.10048
[32] P. X. Gallagher, Sieving by prime powers, Acta Arith. 24 (1973/74), 491 – 497. Collection of articles dedicated to Carl Ludwig Siegel on the occasion of his seventy-fifth birthday, V. · Zbl 0276.10026
[33] P. X. Gallagher, The large sieve and probabilistic Galois theory, Analytic number theory (Proc. Sympos. Pure Math., Vol. XXIV, St. Louis Univ., St. Louis, Mo., 1972) Amer. Math. Soc., Providence, R.I., 1973, pp. 91 – 101.
[34] S. W. Graham, Applications of sieve methods, Ph.D. Dissertation, Univ. of Michigan, Ann Arbor, 1977.
[35] H. Halberstam, The large sieve, Number Theory (Colloq., János Bolyai Math. Soc., Debrecen, 1968), North-Holland, Amsterdam, 1970, pp. 123 – 131.
[36] H. Halberstam and H.-E. Richert, Sieve methods, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], London-New York, 1974. London Mathematical Society Monographs, No. 4. · Zbl 0298.10026
[37] H. Halberstam and K. F. Roth, Sequences. Vol. I, Clarendon Press, Oxford, 1966. · Zbl 0141.04405
[38] E. Hlawka, Bemerkungen zum großen Sieb von Linnik, Österreich. Akad. Wiss. Math.-Natur. Kl. S.-B. II 178 (1970), 13 – 18 (German). · Zbl 0197.32302
[39] Edmund Hlawka, Zum großen Sieb von Linnik, Acta Arith. 27 (1975), 89 – 100 (German). Collection of articles in memory of Juriĭ Vladimirovič Linnik. · Zbl 0249.10046
[40] Christopher Hooley, On the Barban-Davenport-Halberstam theorem. I, J. Reine Angew. Math. 274/275 (1975), 206 – 223. Collection of articles dedicated to Helmut Hasse on his seventy-fifth birthday, III. , https://doi.org/10.1515/crll.1975.274-275.206 C. Hooley, On the Barban-Davenport-Halberstam theorem. II, J. London Math. Soc. (2) 9 (1974/75), 625 – 636. , https://doi.org/10.1112/jlms/s2-9.4.625 C. Hooley, On the Barban-Davenport-Halberstam theorem. III, J. London Math. Soc. (2) 10 (1975), 249 – 256. , https://doi.org/10.1112/jlms/s2-10.2.249 C. Hooley, On the Barban-Davenport-Halberstam theorem. IV, J. London Math. Soc. (2) 11 (1975), no. 4, 399 – 407. · Zbl 0313.10042
[41] M. N. Huxley, The large sieve inequality for algebraic number fields, Mathematika 15 (1968), 178 – 187. · Zbl 0174.08201
[42] M. N. Huxley, The large sieve inequality for algebraic number fields. II. Means of moments of Hecke zeta-functions, Proc. London Math. Soc. (3) 21 (1970), 108 – 128. · Zbl 0215.07303
[43] M. N. Huxley, The large sieve inequality for algebraic number fields. III. Zero-density results, J. London Math. Soc. (2) 3 (1971), 233 – 240. · Zbl 0213.07101
[44] M. N. Huxley, The distribution of prime numbers, Clarendon Press, Oxford, 1972. Large sieves and zero-density theorems; Oxford Mathematical Monographs. · Zbl 0248.10030
[45] M. N. Huxley, Irregularity in sifted sequences, J. Number Theory 4 (1972), 437 – 454. · Zbl 0244.10039
[46] A. E. Ingham, Some trigonometrical inequalities with applications to the theory of series, Math. Z. 41 (1936), no. 1, 367 – 379. · Zbl 0014.21503
[47] John Johnsen, On the large sieve method in \?\?[\?,\?], Mathematika 18 (1971), 172 – 184. · Zbl 0245.10035
[48] I. Kobayashi, Remarks on the large sieve method, Seminar on Modern Methods in Number Theory (Inst. Statist. Math., Tokyo, 1971) Inst. Statist. Math., Tokyo, 1971, pp. 3. · Zbl 0314.10030
[49] Isamu Kobayashi, A note on the Selberg sieve and the large sieve, Proc. Japan. Acad. 49 (1973), 1 – 5. · Zbl 0268.10035
[50] I. P. Kubilyus, Probabilistic methods in the theory of numbers, Uspehi Mat. Nauk (N.S.) 11 (1956), no. 2(68), 31 – 66 (Russian).
[51] U. V. Linnik, ”The large sieve.”, C. R. (Doklady) Acad. Sci. URSS (N.S.) 30 (1941), 292 – 294. · Zbl 0024.29302
[52] U. V. Linnik, A remark on the least quadratic non-residue, C. R. (Doklady) Acad. Sci. URSS (N.S.) 36 (1942), 119 – 120. · Zbl 0063.03570
[53] J. Marcinkiewicz and A. Zygmund, Proof of a gap theorem, Duke Math. J. 4 (1938), no. 3, 469 – 472. · JFM 64.0223.01
[54] K. R. Matthews, On a bilinear form associated with the large sieve, J. London Math. Soc. (2) 5 (1972), 567 – 570. · Zbl 0243.10038
[55] K. R. Matthews, On an inequality of Davenport and Halberstam, J. London Math. Soc. (2) 4 (1972), 638 – 642. · Zbl 0234.10032
[56] K. R. Matthews, Hermitian forms and the large and small sieves, J. Number Theory 5 (1973), 16 – 23. · Zbl 0253.10038
[57] Ming-chit Liu, On a result of Davenport and Halberstam, J. Number Theory 1 (1969), 385 – 389. · Zbl 0182.37602
[58] H. L. Montgomery, A note on the large sieve, J. London Math. Soc. 43 (1968), 93 – 98. · Zbl 0254.10043
[59] H. L. Montgomery, Mean and large values of Dirichlet polynomials, Invent. Math. 8 (1969), 334 – 345. · Zbl 0204.37301
[60] H. L. Montgomery, Zeros of \?-functions, Invent. Math. 8 (1969), 346 – 354. · Zbl 0204.37401
[61] Hugh L. Montgomery, Topics in multiplicative number theory, Lecture Notes in Mathematics, Vol. 227, Springer-Verlag, Berlin-New York, 1971. · Zbl 0216.03501
[62] H. L. Montgomery and R. C. Vaughan, The large sieve, Mathematika 20 (1973), 119 – 134. · Zbl 0296.10023
[63] H. L. Montgomery and R. C. Vaughan, Hilbert’s inequality, J. London Math. Soc. (2) 8 (1974), 73 – 82. · Zbl 0281.10021
[64] H. L. Montgomery and R. C. Vaughan, The exceptional set in Goldbach’s problem, Acta Arith. 27 (1975), 353 – 370. Collection of articles in memory of Juriĭ Vladimirovič Linnik. · Zbl 0301.10043
[65] Yoichi Motohashi, A note on the large sieve, Proc. Japan Acad. 53 (1977), no. 1, 17 – 19. · Zbl 0373.10032
[66] Yoichi Motohashi, On Gallagher’s prime number theorem, Proc. Japan Acad. Ser. A Math. Sci. 53 (1977), no. 2, 50 – 52. · Zbl 0379.10029
[67] Yoichi Motohashi, Introduction to the theory of the distribution of prime numbers, Sûgaku 26 (1974), no. 1, 1 – 12 (Japanese).
[68] Yoichi Motohashi, On a density theorem of Linnik, Proc. Japan. Acad. 51 (1975 suppl), 815 – 817. · Zbl 0361.10037
[69] Yoichi Motohashi, A note on the large sieve. II, Proc. Japan Acad. Ser. A Math. Sci. 53 (1977), no. 4, 122 – 124. · Zbl 0443.10030
[70] Raymond E. A. C. Paley and Norbert Wiener, Fourier transforms in the complex domain, American Mathematical Society Colloquium Publications, vol. 19, American Mathematical Society, Providence, RI, 1987. Reprint of the 1934 original. · Zbl 0123.30104
[71] P. A. B. Pleasants, A sum related to the distribution modulo 1 of sets of real numbers., Quart. J. Math. Oxford Ser. (2) 21 (1970), 321 – 336. · Zbl 0234.10038
[72] A. A. Ren\(^{\prime}\)i, On the representation of an even number as the sum of a single prime and a single almost-prime number, Doklady Akad. Nauk SSSR (N.S.) 56 (1947), 455 – 458 (Russian).
[73] A. Rényi, On the representation of an even number as the sum of a prime and of an almost prime, Amer. Math. Soc. Transl. (2) 19 (1962), 299 – 321. · Zbl 0119.04005
[74] Alfred Rényi, Un nouveau théorème concernant les fonctions indépendantes et ses applications à la théorie des nombres, J. Math. Pures Appl. (9) 28 (1949), 137 – 149 (French). · Zbl 0033.16201
[75] Alfréd Rényi, Probability methods in number theory, Publ. Math. Collectae Budapest 1 (1949), no. 21, 9. · Zbl 0034.17302
[76] Alfred Rényi, On a theorem of the theory of probability and its application in number theory, Časopis Pěst. Mat. Fys. 74 (1949), 167 – 175 (1950) (Russian, with Czech summary).
[77] Alfred Rényi, Sur un théorème général de probabilité, Ann. Inst. Fourier Grenoble 1 (1949), 43 – 52 (1950) (French). · Zbl 0036.08703
[78] Alfred Rényi, On the large sieve of Ju V. Linnik, Compositio Math. 8 (1950), 68 – 75. · Zbl 0034.02403
[79] Alfréd Rényi, On the probabilistic generalization of the large sieve of Linnik, Magyar Tud. Akad. Mat. Kutató Int. Közl. 3 (1958), 199 – 206 (English, with Hungarian and Russian summaries). · Zbl 0104.12101
[80] A. Rényi, Probabilistic methods in number theory, Proc. Internat. Congress Math., Cambridge Univ. Press, New York, 1960, pp. 529 – 539.
[81] A. Rényi, New version of the probabilistic generalization of the large sieve., Acta Math. Acad. Sci. Hungar. 10 (1959), 217 – 226 (English, with Russian summary). · Zbl 0154.04804
[82] G. J. Rieger, Zum Sieb von Linnik, Arch. Math. (Basel) 11 (1960), 14 – 22 (German). · Zbl 0099.26802
[83] G. J. Rieger, Das grosse Sieb von Linnik für algebraische Zahlen, Arch. Math. (Basel) 12 (1961), 184 – 187 (German). · Zbl 0100.03802
[84] P. M. Ross, On Chen’s theorem that each large even number has the form \?\(_{1}\)+\?\(_{2}\) or \?\(_{1}\)+\?\(_{2}\)\?\(_{3}\), J. London Math. Soc. (2) 10 (1975), no. 4, 500 – 506. · Zbl 0307.10049
[85] K. F. Roth, Remark concerning integer sequences, Acta Arith. 9 (1964), 257 – 260. · Zbl 0125.29601
[86] K. F. Roth, On the large sieves of Linnik and Rényi, Mathematika 12 (1965), 1 – 9. · Zbl 0137.25904
[87] K. F. Roth, The large sieve, Inaugural Lecture, 23 January, vol. 1968, Imperial College of Science and Technology, London, 1968. · Zbl 0169.37503
[88] A. G. Samandarov, The large sieve in algebraic number fields, Mat. Zametki 2 (1967), 673 – 680 (Russian). · Zbl 0155.37302
[89] Werner Schaal, On the large sieve method in algebraic number fields, J. Number Theory 2 (1970), 249 – 270. · Zbl 0198.07101
[90] I. Schur, Bemerkungen zur Theorie der beschrankten Bilinearformen mit unendlich vielen Verändlichen, J. Reine Angew. Math. 140 (1911), 1-28. · JFM 42.0367.01
[91] Wolfgang Schwarz, Einführung in Siebmethoden der analytischen Zahlentheorie, Bibliographisches Institut, Mannheim-Vienna-Zurich, 1974. · Zbl 0305.10043
[92] S. L. Sobolev, Applications of functional analysis in mathematical physics, Translated from the Russian by F. E. Browder. Translations of Mathematical Monographs, Vol. 7, American Mathematical Society, Providence, R.I., 1963. · Zbl 0123.09003
[93] A. V. Sokolovskiĭ, The ”large sieve”, Acta Arith. 25 (1973/74), 301 – 306 (Russian).
[94] E. C. Titchmarsh, A class of trigonometrical series, J. London Math. Soc. 3 (1928), 300-304. · JFM 54.0311.02
[95] Saburô Uchiyama, The maximal large sieve, Hokkaido Math. J. 1 (1972), 117 – 126. · Zbl 0254.10044
[96] A. I. Vinogradov, On the density hypothesis for Dirichlet L-functions, Izv. Akad. Nauk SSSR Ser. Mat. 29 (1965), 903-934. Correction: Izv. Akad. Nauk SSSR Ser. Mat. 30 (1966), 719-720. · Zbl 0128.04205
[97] Norbert Wiener, A class of gap theorems, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (2) 3 (1934), no. 3-4, 367 – 372. · Zbl 0010.02803
[98] Robin J. Wilson, The large sieve in algebraic number fields, Mathematika 16 (1969), 189 – 204. · Zbl 0186.08502
[99] Dieter Wolke, Farey-Brüche mit primem Nenner und das große Sieb, Math. Z. 114 (1970), 145 – 158 (German). · Zbl 0177.07102
[100] Dieter Wolke, Einige Anwendungen des großen Siebes auf zahlentheoretische Funktionen, Habilitationsschrift, Philipps-Universität Marburg/Lahn, Marburg/Lahn, 1970 (German).
[101] D. Wolke, On the large sieve with primes, Acta Math. Acad. Sci. Hungar. 22 (1971/72), 239 – 247. · Zbl 0231.10027
[102] Dieter Wolke, Über eine Ungleichung von A. I. Vinogradov, Arch. Math. (Basel) 23 (1972), 625 – 629 (German). · Zbl 0248.10028
[103] Dieter Wolke, A lower bound for the large sieve inequality, Bull. London Math. Soc. 6 (1974), 315 – 318. · Zbl 0292.10037
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.