×

zbMATH — the first resource for mathematics

Amenable pairs of groups and ergodic actions and the associated von Neumann algebras. (English) Zbl 0408.22011

MSC:
22D40 Ergodic theory on groups
22D25 \(C^*\)-algebras and \(W^*\)-algebras in relation to group representations
28D05 Measure-preserving transformations
46L10 General theory of von Neumann algebras
43A07 Means on groups, semigroups, etc.; amenable groups
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] A. Connes, Classification of injective factors. Cases \?\?\(_{1}\), \?\?_\infty , \?\?\?_\?, \?\?=1, Ann. of Math. (2) 104 (1976), no. 1, 73 – 115. · Zbl 0343.46042 · doi:10.2307/1971057 · doi.org
[2] R. E. Edwards, Functional analysis. Theory and applications, Holt, Rinehart and Winston, New York-Toronto-London, 1965. · Zbl 0182.16101
[3] John Ernest, Hopf-von Neumann algebras, Functional Analysis (Proc. Conf., Irvine, Calif., 1966) Academic Press, London; Thompson Book Co., Washington, D.C., 1967, pp. pp 195 – 215.
[4] Pierre Eymard, Moyennes invariantes et représentations unitaires, Lecture Notes in Mathematics, Vol. 300, Springer-Verlag, Berlin-New York, 1972 (French). · Zbl 0249.43004
[5] Shmuel Glasner, Relatively invariant measures, Pacific J. Math. 58 (1975), no. 2, 393 – 410. · Zbl 0313.54048
[6] Hui Hsiung Kuo, Gaussian measures in Banach spaces, Lecture Notes in Mathematics, Vol. 463, Springer-Verlag, Berlin-New York, 1975. · Zbl 0306.28010
[7] George W. Mackey, Point realizations of transformation groups, Illinois J. Math. 6 (1962), 327 – 335. · Zbl 0178.17203
[8] Arlan Ramsay, Nontransitive quasi-orbits in Mackey’s analysis of group extensions, Acta Math. 137 (1976), no. 1, 17 – 48. · Zbl 0334.22004 · doi:10.1007/BF02392411 · doi.org
[9] Shôichirô Sakai, \?*-algebras and \?*-algebras, Springer-Verlag, New York-Heidelberg, 1971. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 60. · Zbl 0233.46074
[10] I. E. Segal, Tensor algebras over Hilbert spaces. I, Trans. Amer. Math. Soc. 81 (1956), 106 – 134. · Zbl 0070.34003
[11] I. E. Segal, Ergodic subgroups of the orthogonal group on a real Hilbert space, Ann. of Math. (2) 66 (1957), 297 – 303. · Zbl 0083.10603 · doi:10.2307/1970001 · doi.org
[12] Jun Tomiyama, On the projection of norm one in \?*-algebras, Proc. Japan Acad. 33 (1957), 608 – 612. · Zbl 0081.11201
[13] Robert J. Zimmer, Extensions of ergodic group actions, Illinois J. Math. 20 (1976), no. 3, 373 – 409. · Zbl 0334.28015
[14] Robert J. Zimmer, Amenable ergodic group actions and an application to Poisson boundaries of random walks, J. Functional Analysis 27 (1978), no. 3, 350 – 372. · Zbl 0391.28011
[15] Robert J. Zimmer, On the von Neumann algebra of an ergodic group action, Proc. Amer. Math. Soc. 66 (1977), no. 2, 289 – 293. · Zbl 0367.28013
[16] Robert J. Zimmer, Hyperfinite factors and amenable ergodic actions, Invent. Math. 41 (1977), no. 1, 23 – 31. · Zbl 0361.46061 · doi:10.1007/BF01390162 · doi.org
[17] Robert J. Zimmer, Orbit spaces of unitary representations, ergodic theory, and simple Lie groups, Ann. of Math. (2) 106 (1977), no. 3, 573 – 588. · Zbl 0393.22006 · doi:10.2307/1971068 · doi.org
[18] Jacques Dixmier, Les algèbres d’opérateurs dans l’espace hilbertien (algèbres de von Neumann), Gauthier-Villars Éditeur, Paris, 1969 (French). Deuxième édition, revue et augmentée; Cahiers Scientifiques, Fasc. XXV. · Zbl 0088.32304
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.