×

zbMATH — the first resource for mathematics

Oscillation criteria for fourth-order linear differential equations. (English) Zbl 0408.34032

MSC:
34C10 Oscillation theory, zeros, disconjugacy and comparison theory for ordinary differential equations
34A30 Linear ordinary differential equations and systems
PDF BibTeX XML Cite
Full Text: EuDML
References:
[1] AHMAD SHAIR: On the oscillation of solutions of a class of linear fourth order differential equations. Pac. J. Math., 34, 1970. · Zbl 0176.20402
[2] HEIDEL J. W.: Qualitative behavior of solutions of a third order nonlinear differential equation. Pac. J. Math., 27, 1968. · Zbl 0172.11703
[3] GERA M.: Nichtoszillatorische und oszillatorische Differentialgleichungen dritter Ordnung. Čas. Pěst. Mat., 96, 1971. · Zbl 0222.34034
[4] KONDRATEV V. A.: O koleblemosti rešenij linejnych differencialnych uravnenij tretiego i četvertogo poriadkov. DAN SSR, 118, 1958.
[5] KONDRATEV V. A.: O koleblemosti rešenij linejnych uravnenij tretiego i četvertogo poriadkov. Trudy moskovskogo mat. obšč., 8, 1959.
[6] LAZER A. C: The behaviour of sofutions of the differential equation y”’ + p(t)y’ + q(t)y = 0. Pac. J. Math., 17, 1966. · Zbl 0143.31501
[7] LEIGHTON W., NEHARI Z.: On the oscillation of solutions of self-adjoint linear differential equations of the fourth order. Trans. Amer. Math. Soc., 89, 1958. · Zbl 0084.08104
[8] PUDEI V.: Über die Eigenschaften der Lösungen linearer Differentialgleichungen gerader Ordnung. Čas. Pěst. Mat., 94, 1969. · Zbl 0193.04401
[9] REGENDA J.: On some properties of third- order differential equation. Math. slov., 26, 1976. · Zbl 0351.34020
[10] REGENDA J.: Oscillation and nonoscillation properties of the solutions of the differential equation y(4) + P(t)Y” + Q(t)y = 0. Math. slov.) · Zbl 0406.34041
[11] ROVDER J.: Oscillation criteria for third-order linear differential equations. Mat. Čas., 25, 1975. · Zbl 0309.34028
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.