Smith, Russell A. The Poincaré-Bendixson theorem for certain differential equations of higher order. (English) Zbl 0408.34042 Proc. R. Soc. Edinb., Sect. A 83, 63-79 (1979). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 1 ReviewCited in 11 Documents MSC: 35A30 Geometric theory, characteristics, transformations in context of PDEs 35G30 Boundary value problems for nonlinear higher-order PDEs 35B10 Periodic solutions to PDEs 37D99 Dynamical systems with hyperbolic behavior 70K05 Phase plane analysis, limit cycles for nonlinear problems in mechanics 34C15 Nonlinear oscillations and coupled oscillators for ordinary differential equations Keywords:Poincare-Bendixson Theorem; Periodic Orbits of Plane Autonomous Systems; Autonomous Differential Equations of Higher Order; Qualitative Properties of Nonlinear Equations; Dynamical Systems; Nonlinear Oscillations; Limit Cycles PDF BibTeX XML Cite \textit{R. A. Smith}, Proc. R. Soc. Edinb., Sect. A, Math. 83, 63--79 (1979; Zbl 0408.34042) Full Text: DOI OpenURL References: [1] DOI: 10.1216/RMJ-1977-7-3-457 · Zbl 0373.34021 [2] Hirsch, Differential Equations, Dynamical Systems, and Linear Algebra (1974) [3] Burkin, Sibirsk. Mat. Z. 18 pp 251– (1977) [4] Borg, K. Tekn. Högsk. Handl. 153 pp 12– (1960) [5] Vaisbord, Mat. Sb. 56 pp 43– (1962) [6] Smith, Proc. Roy. Soc. Edinburgh Sect. A 79 pp 327– (1977) · Zbl 0417.34073 [7] Smith, Proc. Roy. Soc. Edinburgh Sect. A 76 pp 31– (1976) · Zbl 0348.34032 [8] DOI: 10.1112/jlms/s2-7.2.203 · Zbl 0269.34043 [9] DOI: 10.2307/2373135 · Zbl 0116.06803 [10] Pliss, Nonlocal Problems of the Theory of Oscillations (1966) [11] DOI: 10.1002/zamm.19690490307 · Zbl 0175.10302 [12] DOI: 10.1080/00207177108931977 · Zbl 0219.93014 [13] Newman, Elements of the Topology of Plane Sets of Points (1951) · Zbl 0045.44003 [14] Mirsky, An Introduction to Linear Algebra (1955) · Zbl 0066.26305 [15] DOI: 10.1007/BF00975894 · Zbl 0295.34029 [16] DOI: 10.1016/0022-247X(61)90059-2 · Zbl 0105.29301 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.