×

zbMATH — the first resource for mathematics

On a certain type of discrete two-point boundary problem arising in discrete optimal control. (English) Zbl 0408.49030

MSC:
49K99 Optimality conditions
93C55 Discrete-time control/observation systems
65L10 Numerical solution of boundary value problems involving ordinary differential equations
PDF BibTeX XML Cite
Full Text: EuDML
References:
[1] M. D. Canon C. D. Cullum E. Polak: Theory of Optimal Control and Mathematical Programming. McGraw-Hill, New York 1970. · Zbl 0264.49001
[2] В. Г. Болтянский: Оптимальное управление дискретными системами. Hayka, Москва 1973. · Zbl 1170.01397
[3] J. Doležal: Necessary optimality conditions for discrete systems with state-dependent control region. Kybernetika 11 (1975), 6, 423-450. · Zbl 0321.49014
[4] E. Polak: Computational Methods in Optimization: Unified Approach. Academic Press, New York 1972. · Zbl 0301.90040
[5] A. Miele R. R. Iyer: Modified quasilinearization method for solving nonlinear two-point boundary-value problems. J. Math. Anal. Applies 36 (1971), 3, 674 - 692. · Zbl 0226.65058
[6] J. Doležal: On the Modified Quasilinearization Method for Discrete Two-Point Boundary-Value Problems. Research Report ÚTIA ČSAV, No. 788, Prague 1977.
[7] S. M. Roberts J. S. Shipman: Two-Point Boundary Value Problems: Shooting Methods. American Elsevier, New York 1972. · Zbl 0239.65061
[8] J. Doležal: Metoda modifikované kvazilinearizace pro řešení implicitních nelineárních dvoubodových okrajových úloh pro soustavy diferenčních rovnic. Symposium ALGORITMY’79, Vysoké Tatry, 23.-27. 4. 1979.
[9] J. Doležal J. Fidler: K otázce numerického řešení implicitních dvoubodových okrajových problémů. Research Report ÚTIA ČSAV, No. 857, Praha 1978.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.