Kohli, J. K. A class of mappings containing all continuous and all semiconnected mappings. (English) Zbl 0408.54003 Proc. Am. Math. Soc. 72, 175-181 (1978). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 5 ReviewsCited in 6 Documents MSC: 54C10 Special maps on topological spaces (open, closed, perfect, etc.) 54C05 Continuous maps Keywords:s-continuous; semiconnected functions; semilocally connected spaces PDF BibTeX XML Cite \textit{J. K. Kohli}, Proc. Am. Math. Soc. 72, 175--181 (1978; Zbl 0408.54003) Full Text: DOI References: [1] N. Bourbaki, General Topology. Part I, Addison-Wesley, Reading, Mass., 1966. · Zbl 0145.19302 [2] James Dugundji, Topology, Allyn and Bacon, Inc., Boston, Mass., 1966. · Zbl 0144.21501 [3] Francedlaois Lorrain, Notes on topological spaces with minimum neighborhoods, Amer. Math. Monthly 76 (1969), 616 – 627. · Zbl 0207.21201 [4] Melvin R. Hagan, Conditions for continuity of certain open monotone functions, Proc. Amer. Math. Soc. 30 (1971), 175 – 178. · Zbl 0222.54012 [5] John Jones Jr., On semiconnected mappings of topological spaces, Proc. Amer. Math. Soc. 19 (1968), 174 – 175. · Zbl 0155.50202 [6] J. K. Kohli, Sufficient conditions for continuity of certain connected functions, Glas. Mat. Ser. III 15(35) (1980), no. 2, 377 – 381 (English, with Serbo-Croatian summary). · Zbl 0455.54007 [7] -, On monotone extensions of maps (preprint). [8] Yu-Lee Lee, Some characterizations of semi-locally connected spaces, Proc. Amer. Math. Soc. 16 (1965), 1318 – 1320. · Zbl 0135.41003 [9] Paul E. Long, Concerning semiconnected maps, Proc. Amer. Math. Soc. 21 (1969), 117 – 118. · Zbl 0175.49304 [10] Paul E. Long and Larry L. Herrington, Functions with strongly-closed graphs, Boll. Un. Mat. Ital. (4) 12 (1975), no. 3, 381 – 384 (English, with Italian summary). · Zbl 0326.54009 [11] Gordon Thomas Whyburn, Analytic topology, American Mathematical Society Colloquium Publications, Vol. XXVIII, American Mathematical Society, Providence, R.I., 1963. · Zbl 0117.15804 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.