×

zbMATH — the first resource for mathematics

On the invariance principle for sums of independent identically distributed random variables. (English) Zbl 0408.60028

MSC:
60F17 Functional limit theorems; invariance principles
60G50 Sums of independent random variables; random walks
60G10 Stationary stochastic processes
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bártfai, P, Die bestimmung der zu einem widerkehrenden prozess gehörenden verteilungsfunktion aus den mit fehlern behafteten daten einer einzigen realisation, Studia sci. math. hungar., 1, 161-168, (1966) · Zbl 0156.39102
[2] Bártfai, P, Über die entfernung der irrfahrtswege, Studia sci. math. hung., 5, 41-49, (1970) · Zbl 0274.60048
[3] Bickel, P.J; Rosenblatt, M, On some global measures of the deviations of density function estimates, Ann. statist., 1, 1071-1095, (1973) · Zbl 0275.62033
[4] Billingsley, P, ()
[5] Borovkov, A.A, On the rate of convergence for the invariance principle, Theor. probability appl., 18, 217-234, (1973), (in Russian) · Zbl 0323.60031
[6] Breiman, L, On the tail behaviour of sums of independent random variables, Z. wahrscheinlichkeitstheorie verw. gebiete, 9, 20-24, (1967) · Zbl 0339.60050
[7] Csörgö, M; Révész, P; Csörgö, M; Révész, P, A new method to prove Strassen type laws of invariance principle, II, Z. wahrscheinlichkeitstheorie verw. gebiete, Z. wahrscheinlichkeitstheorie verw. gebiete, 31, 261-269, (1975) · Zbl 0283.60024
[8] Donsker, M, Justification and extension of Doob’s heuristic approach to the Kolmogorov-Smirnov theorems, Ann. math. statist., 23, 277-281, (1952) · Zbl 0046.35103
[9] Doob, J.L, Heuristic approach to the Kolmogorov-Smirnov theorems, Ann. math. statist., 20, 393-403, (1949) · Zbl 0035.08901
[10] Dudley, R.M, Distances of probability measures and random variables, Ann. math. statist., 39, 1563-1572, (1968) · Zbl 0169.20602
[11] Eddös, P; Kac, M, On certain limit theorems in the theory of probability, Bull. amer. math. soc., 52, 292-302, (1946) · Zbl 0063.01274
[12] Eddös, P; Kac, M, On the number of positive sums of independent random variables, Bull. amer. math. soc., 53, 1011-1020, (1947) · Zbl 0032.03502
[13] Komlós, J; Major, P; Tusnády, G; Komlós, J; Major, P; Tusnády, G, An approximation of partial sums of independent RV’s and the sample DF, Z. wahrscheinlichkeitstheorie verw. gebiete. I, Z. wahrscheinlichkeitstheorie verw. gebiete. II, 34, 33-58, (1976) · Zbl 0307.60045
[14] Major, P, The approximation of partial sums of independent RV’s, Z. wahrscheinlichkeitstheorie verw. gebiete, 35, 213-220, (1976) · Zbl 0338.60031
[15] Major, P, An improvement of Strassen’s invariance principle, Ann. probability, (1978), to appear · Zbl 0392.60034
[16] Oodaira, H, The law of iterated logarithm for Gaussian processes, Ann. probability, 1, 964-967, (1973) · Zbl 0272.60025
[17] Prochorov, Ju.V, Convergence of random processes and limit theorems in probability theory, Theor. probability appl., 1, 157-314, (1956)
[18] Skorochod, A.V, Limit theorems for stochastic processes, Theor. probability appl., 1, 261-290, (1956)
[19] Strassen, V, An invariance principle for the law of iterated logarithm, Z. wahrscheinlichkeitstheorie verw. gebiete, 3, 211-226, (1964) · Zbl 0132.12903
[20] Strassen, V, The existence of probability measures with given marginals, Ann. math. statist., 36, 423-439, (1965) · Zbl 0135.18701
[21] Strassen, V, Almost sure behaviour of sums of independent random variables and martingales, (), 315-343, Part 1
[22] Tusnády, G, A remark on the approximation of the sample DF in the multidimensional case, Periodica math. hungar., 8, 53-55, (1977) · Zbl 0386.60006
[23] Vallander, S.S, Calculation of wassenstein distance between probability distributions on the line, Theor. probability appl., 18, 824-827, (1973), (in Russian)
[24] Wichura, M.J, Some Strassen type laws of the iterated logarithm for multiparameter stochastic processes, Ann. probability, 1, 272-296, (1973) · Zbl 0288.60030
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.