×

zbMATH — the first resource for mathematics

Chernoff bounds for discriminating between two Markov processes. (English) Zbl 0408.62070

MSC:
62M02 Markov processes: hypothesis testing
62F03 Parametric hypothesis testing
62G10 Nonparametric hypothesis testing
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Chernoff H., Ann. Math. Stat 23 pp 493– (1952) · Zbl 0048.11804 · doi:10.1214/aoms/1177729330
[2] Chernoff P.R., J. Functional Anal 2 pp 238– (1968) · Zbl 0157.21501 · doi:10.1016/0022-1236(68)90020-7
[3] Dynkin E.B., Thy. Prob. Appl 1 pp 22– (1956) · doi:10.1137/1101003
[4] Dynkin E. B., Thy. Prob. Appl 1 pp 34– (1956) · doi:10.1137/1101004
[5] Evans J. E., IEEE Trans. Info. Thy 20 pp 569– (1974) · Zbl 0302.94003 · doi:10.1109/TIT.1974.1055289
[6] Feller W., An Introduction to Probability Theory and Its Applications (1971) · Zbl 0219.60003
[7] Grenander U., Arkiv. For Mathematik 1 pp 195– (1950) · doi:10.1007/BF02590638
[8] Hellman M. E., IEEE Trans. Info. Thy 16 pp 368– (1970) · Zbl 0218.62005 · doi:10.1109/TIT.1970.1054466
[9] Karlin S., J. Math. Mech. 8 pp 907– (1959)
[10] Kraft C.H., Univ. California at Berkeley Pub. Statistics 2 pp 125– (1955)
[11] Newman C. M., Bull. Am. Math. Soc 78 pp 268– (1972) · Zbl 0233.60041 · doi:10.1090/S0002-9904-1972-12952-5
[12] Newman, C.M. 1973. The orthogonality of independent increment processes. Courant Institute of Mathematical Sciences. 1973. · Zbl 0269.60055
[13] Riordan J., Stochastic Service Systems (1962) · Zbl 0106.33601
[14] Shannon C. E., Info. Control 10 pp 65– (1967) · Zbl 0245.94007 · doi:10.1016/S0019-9958(67)90052-6
[15] Skorokhod A. V., Thy. Prob. Appl 5 pp 40– (1960) · doi:10.1137/1105005
[16] Trotter H. F., Proc. Am. Math. Soc 10 pp 545– (1959) · doi:10.1090/S0002-9939-1959-0108732-6
[17] Naylor A. W., Linear Operator Theory in Engineering and Science (1971)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.