zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
$L^\infty$-convergence of finite element approximation to quasilinear initial boundary value problems. (English) Zbl 0408.65067

MSC:
65N30Finite elements, Rayleigh-Ritz and Galerkin methods, finite methods (BVP of PDE)
65N12Stability and convergence of numerical methods (BVP of PDE)
65N15Error bounds (BVP of PDE)
35K60Nonlinear initial value problems for linear parabolic equations
WorldCat.org
Full Text: EuDML
References:
[1] 1. J H. BRAMBLE and S. R HILBERT, Bounds on a Class of Linear Functionals with Applications to Hermite Interpolation, Numer. Math., Vol 16, 1971, pp. 362-369 Zbl0214.41405 MR290524 · Zbl 0214.41405 · doi:10.1007/BF02165007 · eudml:132041
[2] 2. J H. BRAMBLE, A. W. SCHATZ, V. THOMEE and L. WAHLBIN, Some Convergence Estimates for Semidiscrete Galerkin Type Approximations for Parabolic Equations, S.I.A M. J. Numer Anal , Vol. 14, 1977, pp 218-241. Zbl0364.65084 MR448926 · Zbl 0364.65084 · doi:10.1137/0714015
[3] 3 P. G. CIARLET and P A. RAVIART, General Lagrange and Hermite interpolation in $R^n$ with applications to finite element methods, Arch Rat.Mech Anal., Vol.46, 1972, pp 177-199 Zbl0243.41004 MR336957 · Zbl 0243.41004 · doi:10.1007/BF00252458
[4] 4. P. G. CIARLET and P A RAVIART, The Combined Effect of Curved Boundaries and Numerical Integration in the Isoparametnc Finite Element Method in The Mathematical Foundation of the Fmite Element Method with Applications to Partial Differential Equations, A. K. Aziz, Ed., Academic Press, New York, 1972 Zbl0262.65070 MR421108 · Zbl 0262.65070
[5] 5 M DOBROWOLSKI, $L^\infty$-Fehlerabschatzungen in der Methode der finiten Elemente bei quasilinearen parabolischen Differential gleichungen zweiter Ordnung, Diplomarbeit No 13569, Bonn, 1976.
[6] 6. J. Jr. DOUGLAS and T. DUPONT, Galerkin Methods for Parabohc Equations, S I.A M., J. Numer. Anal., Vol. 7, 1970, pp 575-626 Zbl0224.35048 MR277126 · Zbl 0224.35048 · doi:10.1137/0707048
[7] 7. J FREHSE, Optimale gleichmässige Konvergenz der Methode der finiten Elemente bei quasilinearen $N$-dimensionalen Randwertproblemen, Zeitschrift Angew. Math u. Mech., Tagungsband G.A M.M., 1976 (to appear). Zbl0357.65085 MR436622 · Zbl 0357.65085 · doi:10.1002/zamm.19770570405
[8] 8. J. FREHSE and R. RANNACHER, Asymptotic $L^\infty$-error estimates for linear finite element approximations of quasilinear boundary value problems, S.I.A.M J Numer. Anal, (to appear). Zbl0386.65049 MR502037 · Zbl 0386.65049 · doi:10.1137/0715026
[9] 9 J. FREHSE and R RANNACHER, Optimal Uniform Convergence for the Finite Element Approximation of a Quasilinear Elliptic Boundary Value Problem, Preprint. · Zbl 0386.65049
[10] 10. A. FRIEDMAN, Partial Differential Equations of Parabolic Type, Prentice-Hall, Englewood Cliffs, N. L, 1964. Zbl0144.34903 MR181836 · Zbl 0144.34903
[11] 11. O. A. LADYZENSKAJA, V A. SOLONNIKOV and N. N. URAL’CEVA, Linear and Quasihnear Equations of Parabolic Type, American Mathematical Society, Providence, Rhode Island, 1968 Zbl0174.15403 · Zbl 0174.15403
[12] 12. J. L. LIONS and E MAGENES, Problèmes aux limites non homogènes et applications, Vol. I, II. Dunod, Paris, 1968, 1970. Zbl0165.10801 · Zbl 0165.10801
[13] 13 J NITSCHE, $L_\infty$-Convergence of Finite Element Approximation, Preprint; 2. Conference on Finite Eléments, Rennes, 1975 Zbl0362.65088 MR568857 · Zbl 0362.65088
[14] 14. R RANNACHER, Some Asymptotic Error Estimates for Finite Element Approximation of Minimal Surface , Preprint. MR445866 · Zbl 0356.35034
[15] 15. V THOMÉE and L. WAHLBIN, On Galerkin Methods in Semilinear Parabolic Problems, Zbl0307.35007 · Zbl 0307.35007 · doi:10.1137/0712030
[16] 16. M.F. WHEELER, A priori L 2 -Error Estimates for Galerkin Approximation to Parabohc Partial Differental Equations, S.I.A.M.J. Numer. Anal., Vol. 10, 1973, pp. 723-758. Zbl0232.35060 MR351124 · Zbl 0232.35060 · doi:10.1137/0710062
[17] 17 M. ZLÁMAL, Curved Elements in the Finite Element Methods, I S.I.A M., J Numer Anal., Vol. 10, 1973. pp. 229-249; II. S.I A.M, J. Numer Anal., Vol. 11, 1974, pp. 347-362 MR343660