×

zbMATH — the first resource for mathematics

Discrete-time Galerkin methods for nonlinear evolution equations. (English) Zbl 0408.65071

MSC:
65N40 Method of lines for boundary value problems involving PDEs
35G10 Initial value problems for linear higher-order PDEs
35K25 Higher-order parabolic equations
47H05 Monotone operators and generalizations
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65M20 Method of lines for initial value and initial-boundary value problems involving PDEs
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Douglas, SIAM J. Numer. Anal. 7 pp 575– (1970)
[2] Douglas, Numer. Math. 20 pp 213– (1973)
[3] Dupont, SIAM J. Numer Anal. 11 pp 392– (1974)
[4] Gajewski, Math. Nachr. 69 pp 307– (1975)
[5] Gajewski, Math. Nachr. 68 pp 331– (1975)
[6] Gajewski, Math. Nachr. 72 pp 119– (1976)
[7] und , Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen. Berlin 1974.
[8] Geymonat, Calcolo 13 (1976)
[9] Kacur, Math. Casopis. Sloven. Akad. Vied 25 pp 63– (1975)
[10] Method of Rothe and nonlinear parabolic equations of arbitrary order. Czech. Math. J. In: Theory of nonlinear operators (Summer School Neuendorf 1972, Ed. J. Necas, J. Kolomy, R. Kluge, A. Langenbach), 125–131 (1974).
[11] Necas, Czechoslovak Math. J. 24 pp 496– (1974)
[12] Raviart, J. Math. Pures Appl. 46 pp 11– (1967)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.