×

zbMATH — the first resource for mathematics

Weighted intersection numbers on Hilbert modular surfaces. (English) Zbl 0409.10017

MSC:
11F41 Automorphic forms on \(\mbox{GL}(2)\); Hilbert and Hilbert-Siegel modular groups and their modular and automorphic forms; Hilbert modular surfaces
14J20 Arithmetic ground fields for surfaces or higher-dimensional varieties
PDF BibTeX XML Cite
Full Text: Numdam EuDML
References:
[1] W.L. Baily , JR: The decomposition theorem for V-manifolds . Amer. Jour. Math. 78 (1956) 862-888. · Zbl 0173.22705 · doi:10.2307/2372472
[2] P.A. Griffiths : Function theory of finite order on algebraic varieties I(A) . Jour. Diff. Geometry, 6, 285-306 (1972). · Zbl 0269.14002 · doi:10.4310/jdg/1214430494
[3] G. Harder : On the cohomology of discrete arithmetically defined groups . Proc. Int. Colloq. on Discrete subgroups of Lie groups, 129-160, Bombay (1973). · Zbl 0317.57022
[4] F. Hirzebruch : Hilbert modular surfaces . L’Ens. Math, 19, 183-281 (1973). · Zbl 0285.14007
[5] F. Hirzebruch and D. Zagier : Intersection numbers of curves on Hilbert Modular surfaces and modular forms of Nebentypus , Inventiones math. 36, 57-113 (1976). · Zbl 0332.14009 · doi:10.1007/BF01390005 · eudml:142414
[6] S. Lang : Introduction to Modular forms . Grundlehren der mathematischen Wissenschaften 222, Springer-Verlag 1976. · Zbl 0344.10011
[7] Y. Matsushima and S. Murakami : On vector bundle valued harmonic forms and automorphic forms on symmetric Riemannian manifolds . Annals of Math. 78, No. 2, 365-416 (1963). · Zbl 0125.10702 · doi:10.2307/1970348
[8] G. Shimura : Sur les intégrales attachées aux formes automorphes , Journal of Math. Soc. of Japan, 11, No. 4, 291-311 (1959). · Zbl 0090.05503 · doi:10.2969/jmsj/01140291
[9] D. Toledo and Y.L.L. Tong : Duality and intersection theory in complex manifolds I . Math. Ann. 237, 41-77 (1978). · Zbl 0391.32008 · doi:10.1007/BF01351557 · eudml:182776
[10] D. Zagier : Modular forms aseociated to real quadratic fields . Inventiones math. 30, 1-46 (1975). · Zbl 0308.10014 · doi:10.1007/BF01389846 · eudml:142343
[11] D. Zagier : Modular forms whose Fourier coefficients involve Zeta functions of quadratic fields, collected papers in International Summer School on Modular Functions Bonn 1976 . Springer-Verlag Lecture Notes in Mathematics 627. · Zbl 0372.10017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.