×

Nombres de Hurwitz et unites elliptiques. Un critère de régularité pour les extensions abeliennes d’un corps quadratique imaginaire. (French) Zbl 0409.12008


MSC:

11R23 Iwasawa theory
11R11 Quadratic extensions
11R37 Class field theory
11B39 Fibonacci and Lucas numbers and polynomials and generalizations
PDFBibTeX XMLCite
Full Text: DOI Numdam EuDML

References:

[1] H. M. STARK , Class Fields and Modular Forms of Weight one (Modular Functions of one Variable V ; Lect. Notes in Math., n^\circ 601, 1977 , p. 277-287, Springer). MR 56 #8539 | Zbl 0363.12010 · Zbl 0363.12010
[2] W. E. H. BERWICK , Modular Invariants Expressible in Terms of Quadratic and Cubic Irrationnalities (Proc. London Math. Soc. (2), vol. 28, 1927 , p. 53-69). JFM 54.0408.01
[3] B. J. BIRCH , Weber’s Class Invariants (Mathematika, vol. 16, 1969 , p. 283-294). MR 41 #6816 | Zbl 0226.12005 · Zbl 0226.12005 · doi:10.1112/S0025579300008251
[4] Z. I. BOREVITCH et I. R. CHAFAREVITCH , Théorie des nombres , Gauthier-Villars, 1967 (traduction française). MR 34 #5734 | Zbl 0145.04901 · Zbl 0145.04901
[5] J. W. S. CASSELS , A Note on the Division Values of P (u) (Proc. Cambridge Philos. Soc., vol. 45, 1949 , p. 167-172). MR 10,434b | Zbl 0032.26103 · Zbl 0032.26103
[6] C. CHEVALLEY , Relation entre le nombre de classes d’un sous-corps et celui d’un sur-corps (C. R. Acad. Sc., Paris, t. 191, 2 février 1931 , p. 257-258). Zbl 0001.00901 | JFM 57.0207.03 · Zbl 0001.00901
[7] J. COATES and A. WILES , Kummer’s Criterion for Hurwitz Numbers (Algebraic Number Theory, Papers contributed for the International Symposium, Kyoto 1976 ; S. Iyanaga, Ed. Japan Society for the Promotion of Science, Tokyo, 1977 ). Zbl 0369.12009 · Zbl 0369.12009
[8] J. COATES and A. WILES . On the Conjecture of Birch and Swinnerton-Dyer (Inventiones math., vol. 39, 1977 , p. 223-251). MR 57 #3134 | Zbl 0359.14009 · Zbl 0359.14009 · doi:10.1007/BF01402975
[9] A. FRÖHLICH , Formal Groups (Lect. Notes in Math., n^\circ 74, Springer, 1968 ). MR 39 #4164 | Zbl 0177.04801 · Zbl 0177.04801 · doi:10.1007/BFb0074373
[10] H. HASSE , Über die Klassenzahl abelscher Zahlkörper , Akademie-Verlag, Berlin, 1952 . Zbl 0046.26003 · Zbl 0046.26003
[11] J. HERBRAND , Sur les classes des corps circulaires (Journ. Math. Pures et Appl., vol. 11, 9e série, 1932 , p. 417-441). Article | JFM 58.0180.02
[12] A. HURWITZ , Über die Entwicklungskoeffizienten der lemniscatischen Funktionen (Math. Ann., vol. 51, 1899 , p. 196-226 ; Werke II, p. 342-373). JFM 29.0385.02
[13] N. KATZ , P-adic Interpolation of Real Analytic Eisenstein Series (Ann. of Math. (2), vol. 104, 1976 , p. 459-571). MR 58 #22071 | Zbl 0354.14007 · Zbl 0354.14007 · doi:10.2307/1970966
[14] N. KATZ , Formal Groups and p-adic Interpolation (Astérisque, t. 41-42 ; J. Arith. de Caen, 1976 , p. 55-65). Zbl 0351.14024 · Zbl 0351.14024
[15] H. LANG , Kummersche Kongruenzen für die normierten Entwicklungskoeffizienten der Weierstrassschen P-funktion (Abh. Math. Sem. Hamburg, vol. 33, 1969 , p. 183-196). MR 41 #6780 | Zbl 0183.31304 · Zbl 0183.31304 · doi:10.1007/BF02992933
[16] S. LANG , Elliptic functions , Addison-Wesley, 1973 . MR 53 #13117 | Zbl 0316.14001 · Zbl 0316.14001
[17] H. W. LEOPOLDT , Zur Struktur der l-Klassengruppe galoisscher Zahlkörper (J. Rein. u. And. Math., vol. 199, 1958 , p. 165-174). Article | MR 20 #3116 | Zbl 0082.25402 · Zbl 0082.25402 · doi:10.1515/crll.1958.199.165
[18] S. LICHTENBAUM , On p-adic L-functions associated to elliptic curves , 1976 (à paraître). · Zbl 0425.12017
[19] J. LUBIN , One-Parameter Formal Lie Groups Over p-Adic Integer Rings (Ann. of Math. (2), vol. 80, 1964 , p. 464-484). MR 29 #5827 | Zbl 0135.07003 · Zbl 0135.07003 · doi:10.2307/1970659
[20] J. U. MANIN et M. M. VISHIK , Séries de Hecke p-adiques pour un corps quadratique imaginaire (en russe) (Math. Sbor., vol. 95, 1974 , p. 357-383 ; Math. of U.S.S.R. Sbor., vol. 24, p. 345-371). Zbl 0329.12016 · Zbl 0329.12016 · doi:10.1070/SM1974v024n03ABEH001916
[21] C. J. MORENO , The Von Staudt-Clausen Phenomenon in Geometry and Arithmetic : I. The Values of Zeta Functions , polycopié, 1972 .
[22] A. P. NOVIKOV , Sur la régularité des idéaux premiers de degré un d’un corps quadratique imaginaire (en russe) (Isv. Akad. Nauk S.S.S.R., vol. 33, 1969 , p. 1059-1079 ; Math. of U.S.S.R. Isv., vol. 3, p. 1001-1018). MR 40 #4239 | Zbl 0188.35202 · Zbl 0188.35202
[23] A. M. ODLYZKO , Discriminants bounds , lettre, 29 nov. 1976 . MR 53 #5531 · Zbl 0286.12006
[24] G. POITOU , Minorations de discriminants , d’après A. M. Odlyzko (exp. Bourbaki, n^\circ 479, février 1976 ). Numdam | Zbl 0359.12010 · Zbl 0359.12010 · doi:10.1007/BFb0096066
[25] K. RAMACHANDRA , Some Applications of Kronecker’s Limit Formulas (Ann. of Math. (2), vol. 80, 1964 , p. 104-148). MR 29 #2241 | Zbl 0142.29804 · Zbl 0142.29804 · doi:10.2307/1970494
[26] S. RAMANUJAN , Modular Equations and Approximation to \pi (Quart. J. of Math., vol. 45, 1914 , p. 350-372). JFM 45.1249.01
[27] K. RIBET , A Modular Construction of Unramified p-Extensions of Q (\mu p) (Inventiones math., vol. 34, 1976 , p. 151-162). MR 54 #7424 | Zbl 0338.12003 · Zbl 0338.12003 · doi:10.1007/BF01403065
[28] G. ROBERT , Unités elliptiques Bull. Soc. math. France, mémoire 36, 1973 ). Numdam | MR 57 #9669 | Zbl 0314.12006 · Zbl 0314.12006
[29] G. ROBERT , Régularité des idéaux premiers d’un corps quadratique imaginaire de nombre de classes un (Astérisque, t. 24-25 ; J. Arith. de Bordeaux, 1974 , p. 75-80). Zbl 0318.12003 · Zbl 0318.12003
[30] J.-P. SERRE and J. TATE , Good Reduction of Abelian Varieties (Ann. of Math. (2), vol. 88, 1968 , p. 492-517). MR 38 #4488 | Zbl 0172.46101 · Zbl 0172.46101 · doi:10.2307/1970722
[31] G. SHIMURA , Introduction to the Arithmetic Theory of Automorphic Functions (Publ. Math. Soc., Japan, vol. 11, 1971 ). Zbl 0221.10029 · Zbl 0221.10029
[32] C. L. SIEGEL , Zum Beweise des Starkschen Satze (Invent. math., 5, 1968 , p. 180-191). MR 37 #4045 | Zbl 0175.33602 · Zbl 0175.33602 · doi:10.1007/BF01425549
[33] H. M. STARK , A Transcendance Theorem for Class-Number Problems (Ann. of Math. (2), vol. 94, 1971 , p. 190-199). MR 46 #1716 · Zbl 0219.12009
[34] J. TATE , Algorithm for Determining the type of a Singular Fiber in an Elliptic Pencil (Modular Functions in one Variable ; Lect. Notes in Math., n^\circ 476, 1975 , p. 33-52, Springer). MR 52 #13850 · Zbl 1214.14020 · doi:10.1007/BFb0097582
[35] J. VÉLU , Isogénies entre courbes elliptiques (C. R. Acad. Sc., Paris, t. 273, 26 juillet 1971 , p. 238-241). MR 45 #3414 | Zbl 0225.14014 · Zbl 0225.14014
[36] G. N. WATSON , Singular moduli (5) and (6) (Proc. London Math. Soc. (2), vol. 42, 1936 , p. 377-397 et 398-409, parmi toute une série de travaux). Zbl 0015.38903 | JFM 63.0122.01 · Zbl 0015.38903 · doi:10.1112/plms/s2-42.1.377
[37] H. WEBER , Lehrbuch der Algebra III , Braunschweig, 1908 . JFM 39.0508.06
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.