×

zbMATH — the first resource for mathematics

Commuting varieties of semisimple Lie algebras and algebraic groups. (English) Zbl 0409.17006

MSC:
17B20 Simple, semisimple, reductive (super)algebras
17B45 Lie algebras of linear algebraic groups
20G15 Linear algebraic groups over arbitrary fields
14A10 Varieties and morphisms
PDF BibTeX XML Cite
Full Text: Numdam EuDML
References:
[1] P. Bala and R. Carter : Unipotent elements in semisimple algebraic groups . I. Math. Proc. Cambridge Philos. Soc. 79 (1976) 401-425. · Zbl 0364.22006 · doi:10.1017/S0305004100052403
[2] A. Borel : Linear Algebraic Groups . Benjamin, New York, 1969. · Zbl 0186.33201
[3] A. Borel and J.-P. Serre : Théorèmes de finitude en cohomologie galoisienne . Comment. Math. Helv. 39 (1964) 111-164. · Zbl 0143.05901 · doi:10.1007/BF02566948 · eudml:139285
[4] N. Bourbaki : Éléments de mathematique; Groupes et algèbres de Lie , Chap. 7 et 8. Hermann, Paris, 1975. · Zbl 0505.22006
[5] J. Dixmier : Polarisations dans les algebras de Lie semi-simple complexes . Bull. Sci. Math. 99 (1975) 45-63. · Zbl 0314.17009
[6] M. Gerstenhaber : On dominance and varieties of commuting matrices . Ann. of Math. (2) 73 (1961) 324-348. · Zbl 0168.28201 · doi:10.2307/1970336
[7] D. Johnston and R. Richardson : Conjugacy classes in parabolic subgroups of semisimple algebraic groups, II . Bull. London Math. Soc. 9 (1977) 245-250. · Zbl 0375.22008 · doi:10.1112/blms/9.3.245
[8] B. Kostant : On the conjugacy of real Cartan subalgebras . I. Proc. Nat. Acad. Sci. USA 41 (1955) 967-970. · Zbl 0065.26901 · doi:10.1073/pnas.41.11.967
[9] R. Richardson : Deformations of Lie subgroups and the variation of isotropy supgroups . Acta Math. 129 (1972) 35-73. · Zbl 0242.22020 · doi:10.1007/BF02392213
[10] R. Richardson : Conjugacy classes of parabolic subgroups in semisimple algebraic groups . Bull. London Math. Soc. 6 (1974) 21-24. · Zbl 0287.20036 · doi:10.1112/blms/6.1.21
[11] T. Springer and R. Steinberg : Conjugacy classes, in Seminar in Algebraic Groups and Related Finite Groups , ed. by A. Borel et al., Lecture Notes in Mathematics 131, Springer-Verlag, Berlin-Heidelberg-New York, 1970. · Zbl 0249.20024
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.