×

zbMATH — the first resource for mathematics

Separation of center of mass in homogeneous magnetic fields. (English) Zbl 0409.35027

MSC:
35J10 Schrödinger operator, Schrödinger equation
78A25 Electromagnetic theory (general)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Avron, J.; Herbst, I.; Simon, B., The Zeeman effect revisited, Phys. lett. A, 62, 214, (1977)
[2] Avron, J.; Herbst, I.; Simon, B., Formation of negative ions in magnetic fields, Phys. rev. lett., 39, 1068, (1977)
[3] {\scJ. Avron, I. Herbst, and B. Simon}, Schrödinger operators with magnetic fields. I. General theory, Duke Math. J., to appear.
[4] {\scJ. Avron, I. Herbst, and B. Simon}, Schrodinger operators with magnetic fields. III. The Zeeman effect in atoms, submitted for publication. · Zbl 0464.35086
[5] Boon, M.H., J. math. phys., 13, 1268, (1972)
[6] Boon, M.H.; Seligman, T.H., Theor. math. phys., 14, 1224-1227, (1973)
[7] Brown, E., ()
[8] {\scJ. M. Combes, R. Schrader, and R. Seiler}, Ann. Phys. (N.Y.), to appear.
[9] Dirac, P.A.M., The principles of quantum mechanics, (1967), Oxford Univ. Press London/New York · Zbl 0030.04801
[10] Enss, V., Comm. math. phys., 52, 233-238, (1977)
[11] Grossman, A., (), Halstead
[12] Hunziker, H., Helv. phys. acta, 39, 451, (1966)
[13] Johnson, M.H.; Lippmann, B.A., Phys. ref., 76, 828-832, (1949)
[14] Jorgens, K.; Weidmann, J., Spectral properties of Hamiltonian operators, (), No. 313 · Zbl 0248.35002
[15] Kato, T., Perturbation theory for linear operators, (1966), Springer Berlin · Zbl 0148.12601
[16] {\scC. Kittel}, “Quantum Theory of Solids,” Wiley, New York. · Zbl 0121.44701
[17] Knox, R.S., Theory of excitons, (1963), Academic Press New York · Zbl 0173.30302
[18] Lamb, W.E., Phys. rev., 85, 259, (1952)
[19] Lamb, W.E.; Retherford, R.C., Phys. rev., 79, 549, (1950)
[20] Lavine, R.; O’Carroll, M., J. math. phys., 18, 1908, (1977)
[21] Mackey, G.W., The theory of unitary group representations, (1976), Univ. of Chicago Press Chicago · Zbl 0441.22002
[22] Opechowski, W.; Tam, W.G., Phys. (utr.), 42, 525, (1969)
[23] Reed, M.; Simon, B., (), (exp.)
[24] Simon, B., Geometric methods in multiparticle etc., Comm. math. phys., 55, 259, (1979)
[25] Simon, B., Indiana math. J., 26, 1067-1073, (1977)
[26] {\scB. Simon}, Kato inequality and the comparison of semigroups, J. Functional Anal., to appear.
[27] Simon, B., Ann. of math., 97, 247-274, (1973)
[28] Simon, B., Helv. phys. acta, 43, 607-630, (1970)
[29] {\scW. Thirring}, “Vorlesungen Über Math. Physik,” Vienna Lecture Notes.
[30] van-Winter, C., Mat. fys. skr. dan. vid. sesk., 2, Nos. 8-10, (1964-1965)
[31] Zak, J., ()
[32] Zak, J.; Zak, J.; Zak, J., Phys. rev., Phys. rev., Phys. rev., 135, 776-780, (1964)
[33] Zhislin, G.M., Trudy moskov. mat. obsc., 9, 82-120, (1960)
[34] Ziman, J.M., Principles of the theory of solids, (1964), Cambridge, Univ. Press London · Zbl 0121.44801
[35] Grotsch, H.; Hegstrom, Phys. rev. A, 4, 69, (1971)
[36] {\scK. Hess, R. Schrader, and D. Uhlenbrock}, Duke Math. J., to appear.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.