×

zbMATH — the first resource for mathematics

Asymptotic formulas for Toeplitz determinants. (English) Zbl 0409.47018

MSC:
47B35 Toeplitz operators, Hankel operators, Wiener-Hopf operators
42A16 Fourier coefficients, Fourier series of functions with special properties, special Fourier series
47B10 Linear operators belonging to operator ideals (nuclear, \(p\)-summing, in the Schatten-von Neumann classes, etc.)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] E. W. Barnes, The theory of the G-function, Quart. J. Pure Appl. Math. 31 (1900), 264-313. · JFM 30.0389.02
[2] H. Bateman, Higher transcendental functions, Vol. 1, Bateman Manuscript Project (A. Erdélyi, Editor), McGraw-Hill, New York, 1953. MR 15, 419.
[3] A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Tables of integral transforms. Vol. I, McGraw-Hill Book Company, Inc., New York-Toronto-London, 1954. Based, in part, on notes left by Harry Bateman. · Zbl 0055.36401
[4] Ralph Philip Boas Jr., Entire functions, Academic Press Inc., New York, 1954. · Zbl 0058.30201
[5] Herbert Buchholz, The confluent hypergeometric function with special emphasis on its applications, Translated from the German by H. Lichtblau and K. Wetzel. Springer Tracts in Natural Philosophy, Vol. 15, Springer-Verlag New York Inc., New York, 1969. · Zbl 0169.08501
[6] M. E. Fisher and R. E. Hartwig, Toeplitz determinants. Some applications, theorems and conjectures, Adv. Chem. Phys. 15 (1968), 333-353.
[7] I. C. Gohberg and M. G. Krein, Introduction to the theory of linear nonselfadjoint operators in Hilbert space; English transl., Transl. Math. Monographs, vol. 18, Amer. Math. Soc., Providence, R. I., 1968. MR 39 #7447.
[8] Ulf Grenander and Gabor Szegö, Toeplitz forms and their applications, California Monographs in Mathematical Sciences, University of California Press, Berkeley-Los Angeles, 1958. · Zbl 0080.09501
[9] I. I. Hirschman Jr., On a formula of Kac and Achiezer, J. Math. Mech. 16 (1966), 167 – 196. · Zbl 0154.37203
[10] I. I. Hirschman Jr., On a theorem of Szegö, Kac, and Baxter, J. Analyse Math. 14 (1965), 225 – 234. · Zbl 0141.07001 · doi:10.1007/BF02806390 · doi.org
[11] I. I. Hirschman Jr., Recent developments in the theory of finite Toeplitz operators, Advances in probability and related topics, Vol. 1, Dekker, New York, 1971, pp. 103 – 167.
[12] A. Lenard, Some remarks on large Toeplitz determinants, Pacific J. Math. 42 (1972), 137 – 145. · Zbl 0255.42005
[13] G. Szegö, Orthogonal polynomials, Amer. Math. Soc. Colloq. Publ., vol. 23, rev. ed., Providence, R. I., 1959. MR 21 #5029. · Zbl 0089.27501
[14] E. T. Whittaker and G. N. Watson, A course of modern analysis, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1996. An introduction to the general theory of infinite processes and of analytic functions; with an account of the principal transcendental functions; Reprint of the fourth (1927) edition. · JFM 53.0180.04
[15] Harold Widom, Asymptotic behavior of block Toeplitz matrices and determinants, Advances in Math. 13 (1974), 284 – 322. , https://doi.org/10.1016/0001-8708(74)90072-3 Harold Widom, Asymptotic behavior of block Toeplitz matrices and determinants. II, Advances in Math. 21 (1976), no. 1, 1 – 29. · Zbl 0344.47016 · doi:10.1016/0001-8708(76)90113-4 · doi.org
[16] Harold Widom, Toeplitz determinants with singular generating functions, Amer. J. Math. 95 (1973), 333 – 383. · Zbl 0275.45006 · doi:10.2307/2373789 · doi.org
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.