×

zbMATH — the first resource for mathematics

Contributions to the spectral theory for nonlinear operators in Banach spaces. (English) Zbl 0409.47043

MSC:
47J10 Nonlinear spectral theory, nonlinear eigenvalue problems
Citations:
Zbl 0361.47024
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] S. K. Berberian,Lectures in Functional Analysis and Operalor Theory, Springer-Verlag, 1974. · Zbl 0296.46002
[2] J. Canavati,A theory of numerical range for nonlinear operators, to appear. · Zbl 0445.47045
[3] Darbo, G., Punti uniti in trasformazioni a codominio non compatto, Rend. Sem. Mat. Padova, 24, 84-92 (1955) · Zbl 0064.35704
[4] Dugundji, J., An extension of Tietze’s theorem, Pacific J. Math., 1, 353-367 (1951) · Zbl 0043.38105
[5] N. Dunford - J. T. Schwartz,Linear Operators, Interscience Publishers, 1958.
[6] S. Fučik - J. Nečas - J. Souček - V. Souček,Spectral Analysis of Nonlinear Operators, Lectures Notes in Mathematics, no. 346, Springer-Verlag, 1973. · Zbl 0268.47056
[7] Furi, M.; Martelli, M., On α-Lipschitz retractions of the unit closed ball onto its boundary, Accad. Naz. Lincei, 57, 61-65 (1974) · Zbl 0342.47033
[8] Furi, M.; Vignoli, A., On a property of the unit sphere in a linear normed space, Bull. Acad. Pol. Sci., 18, 333-334 (1970) · Zbl 0194.43501
[9] Furi, M.; Vignoli, A., A nonlinear spectral approach to surjectivity in Banach spaces, J. Funct. Anal., 20, 304-318 (1975) · Zbl 0315.47036
[10] Furi, M.; Vignoli, A., Spectrum for nonlinear maps and bifurcation in the non differentiable case, Ann. Mat. Pura Appl., 113, 265-285 (1977) · Zbl 0366.47028
[11] Furi, M.; Martelli, M.; Vignoli, A., Stably solvable operators in Banach spaces, Accad. Naz. Lincei, 60, 21-26 (1976) · Zbl 0361.47024
[12] Georg, K.; Martelli, M., On spectral theory for nonlinear opertors, J. Funct. Anal., 24, 111-119 (1977) · Zbl 0345.47048
[13] Granas, A., The theory of compact vector fields and some applications to the topology of functional spaces (1962), Warszawa: Rozprawy Matematyezne, Warszawa · Zbl 0111.11001
[14] S. T. Hu,Homotopy theory, Academic Press, 1959. · Zbl 0088.38803
[15] T. Kato,Perturbation theory for linear operators, Springer-Verlag, 1966. · Zbl 0148.12601
[16] M. A. Krasnosel’skij,Topological methods in the theory of nonlinear integral equations, Pergamon Press, 1964.
[17] Kuratowski, C., Sur les espaces complètes, Fund. Math., 15, 301-335 (1930) · JFM 56.1124.04
[18] Michael, E., Continuous selections I, Ann. of Math., 63, 361-382 (1956) · Zbl 0071.15902
[19] L. Nirenberg,An application of generalized degree to a class of nonlinear problems, Colloq. d’Analyse Math., Liège (1971), pp. 57-74.
[20] Nussbaum, R. D., Some fixed point theorems, Bull. Amer. Math. Soc., 77, 360-365 (1971) · Zbl 0212.16502
[21] Nussbaum, R. D., The fixed point index for local condensing maps, Ann. Mat. Pura Appl., 89, 217-258 (1971) · Zbl 0226.47031
[22] Sadovskij, B. N., A fixed point principle, Funk. Anal. Prilož., 1, 74-79 (1967)
[23] Schauder, J., Über lineare elliptische Differentialgleichunger zweiter Ordnung, Math. Z., 38, 257-282 (1934) · Zbl 0008.25502
[24] A. E. Taylor,Introduction to Functional Analysis, John Wiley & Sons Inc., 1958. · Zbl 0081.10202
[25] Hetzer, G., Some remarks on φ^+-operators and on the coincidence degree for a Fredholm equation with noncompact nonlinear perturbation, Ann. Soc. Sci. Bruxelles, 89, 497-508 (1975) · Zbl 0316.47041
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.