Conjugacy relations in subgroups of the mapping class group and a group- theoretic description of the Rochlin invariant. (English) Zbl 0409.57010


57N05 Topology of the Euclidean \(2\)-space, \(2\)-manifolds (MSC2010)
20F34 Fundamental groups and their automorphisms (group-theoretic aspects)
57M05 Fundamental group, presentations, free differential calculus
57M10 Covering spaces and low-dimensional topology
Full Text: DOI EuDML


[1] Artin, E.: Geometric algebra. New York: Interscience 1957 · Zbl 0077.02101
[2] Arf, C.: Untersuchungen über quadratische Formen in Körpern der Charakteristik 2. Crelles Math. J.183, 148-167 (1941) · Zbl 0025.01403
[3] Birman, J.: Braids, links, and mapping class groups. Annals of Mathematical Studies. Princeton: Princeton University Press 1975 · Zbl 0305.57013
[4] Birman, J.: group of homeomorphisms of a closed, oriented 2-manifold. Trans. Amer. Math. Soc.237, 283-309 (1978) · Zbl 0383.57006
[5] Johnson, D.: Homeomorphisms of a surface which act trivially on homology. Proc. Amer. Math. Soc.75, 119-125 (1979) · Zbl 0407.57003 · doi:10.1090/S0002-9939-1979-0529227-4
[6] Johnson, D.: Quadratic forms and the Birman-Craggs homomorphisms. Trans. Amer. Math. Soc. (to appear) · Zbl 0457.57006
[7] Johnson, D.: An abelian quotient of the mapping class groupI g . Math. Ann.249, 225-242 (1980) · Zbl 0428.57002 · doi:10.1007/BF01363897
[8] Lickorisch, W.B.R.: A representation of orientable combinatorial 3-manifolds. Ann. of Math.76, 531-540 (1962) · Zbl 0106.37102 · doi:10.2307/1970373
[9] Magnus, W., Karass, A., Solitar, D.: Combinatorial group theory. New York: Interscience 1966
[10] Powell, J.: Two theorems on the mapping class group of surfaces. Proc. Amer. Math. Soc.68, 347-350 (1978) · Zbl 0391.57009 · doi:10.1090/S0002-9939-1978-0494115-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.