Accelerated projection methods for computing pseudoinverse solutions of systems of linear equations. (English) Zbl 0409.65022


65F20 Numerical solutions to overdetermined systems, pseudoinverses
15A09 Theory of matrix inversion and generalized inverses
65C99 Probabilistic methods, stochastic differential equations
Full Text: DOI


[1] R. S. Anderssen and G. H. Golub,Richardson’s non-stationary matrix iterative procedure, Report STAN-CS-72-304, Stanford (1972).
[2] V. Ashkenazi,Geodetic normal equations, 57–74, inLarge Sparse Sets of Linear Equations, ed. J. K. Reid, Academic Press, New York (1971).
[3] O. Axelsson,On preconditioning and convergence accelerations in sparse matrix problems, CERN 74–10, Geneva (1974). · Zbl 0354.65020
[4] O. Axelsson,Solution of linear systems of equations: iterative methods, inSparse Matrix Techniques, ed. V. A. Barker, Lectures Notes in Mathematics 572, Springer-Verlag (1977).
[5] Å. Björck,Methods for sparse linear least squares problems, inSparse Matrix Computations, eds. J. R. Bunch and D. J. Rose, Academic Press, New York (1976).
[6] Y. T. Chen,Iterative methods for linear least squares problems, Ph. D. dissertation, Dep. Comput. Sci., Waterloo, Report CS-75-04 (1975).
[7] R. J. Clasen,A note on the use of the conjugate gradient method in the solution of a large system of sparse equations, Computer J. 20 (1977), 185–186. · Zbl 0362.65028
[8] P. Concus, G. H. Colub and D. O’Leary,A generalized conjugate gradient method for the numerical solution of elliptic partial differential equations, Report STAN-CS-75-535, Stanford (1975).
[9] J. Dyer,Acceleration of the convergence of the Kaczmarz method and iterated homogeneous transformation, Ph.D. thesis, UCLA, Los Angeles (1965).
[10] T. Elfving,On the conjugate gradient method for solving linear least squares problems, Report LiTH-MAT-R-1978-3, Linköping (1978).
[11] T. Elfving,Group-iterative methods for consistent and inconsistent linear equations, Report LiTH-MAT-R-1977-11, Revised 1978-02-10, Linköping (1978).
[12] S. Erlander,Entropy in linear programs – an approach to planning, Report LiTH-MAT-R-1977-3, Linköping (1977).
[13] V. Friedrich, Zur iterativen Behandlung unterbestimmter und nichtkorrekter linearen Aufgaben, Beiträge zur Numerischen Mathematik, 3 11–20, Oldenburg Verlag, München - Wien (1975). · Zbl 0323.65030
[14] A. de la Garza,An iterative method for solving systems of linear equations, Union Carbide, Oak Ridge, Report K-731, Tennessee (1951).
[15] T. Ginsburg,The conjugate gradient method, inHandbook for Automatic Computation Vol. II,Linear Algebra, eds. J. H. Wilkinson and C. Reinsch, Springer-Verlag (1971).
[16] G. T. Herman, A. Lent and S. W. Rowland,ART: Mathematics and Applications, J. Theor, Biol. 42 (1973), 1–32.
[17] M. R. Hestenes,Pseudoinverses and conjugate gradients, Comm. of the ACM 18 (1975), 40–43. · Zbl 0304.65029
[18] M. R. Hestenes and E. Stiefel,Methods of conjugate gradients for solving linear systems, Journal of Research of the National Bureau of Standards, Sect. B 49 (1952), 409–436. · Zbl 0048.09901
[19] A. S. Householder and F. L. Bauer,On certain iterative methods for solving linear systems, Numer. Math. 2 (1960), 55–59. · Zbl 0168.13501
[20] S. Kaczmarz,Angenäherte Auflösung von Systemen linearer Gleichungen, Bull. Internat. Acad. Polon. Sciences et Lettres (1937), 355–357. · Zbl 0017.31703
[21] W. J. Kammerer and M. Z. Nashed,On the convergence of the conjugate gradient method for singular linear operator equations, SIAM J. Numer. Anal. 9 (1972), 165–181. · Zbl 0243.65026
[22] H. B. Keller,On the solution of singular and semidefinite linear systems by iteration, J. SIAM Numer. Anal. 2 (1965), 281–290. · Zbl 0135.37503
[23] C. Lanozos,Solution of linear equations by minimized iteration, Journal of Research of the National Bureau of Standards 49 Sect. B, (1952), 33–53.
[24] P. Läuchli, Iterative Lösung und Fehlerabschätzung in der Ausgleichsrechnung, Z. für angew. Math. und Physik 10 (1959), 245–280. · Zbl 0090.33802
[25] C. C. Paige and M. A. Saunders,Solution of sparse indefinite systems of linear equations, SIAM J. Numer. Anal. 12 (1975), 617–629. · Zbl 0319.65025
[26] W. Peters, Lösung linearer Gleichungssysteme durch Projektion auf Schnitträume von Hyperebenen und Berechnung einer verallgemeinerten Inversen, Beiträge zur Numerischen Mathematik 5 (1976), 129–146.
[27] R. J. Plemmons,Stationary iterative methods for linear systems with non-Hermitian singular matrices, Report from Dept. of Comp. Science, The University of Tennessee, Knoxville, Tennessee.
[28] J. K. Reid,On the method of conjugate gradients for the solution of large sparse systems of linear equations, inLarge Sparse Sets of Linear Equations, ed. J. K. Reid, Academic Press, New York (1971).
[29] H. Rutishauser,Theory of gradient methods, inRefined Iterative Methods for Computation of the Solution and the Eigenvalues of Self-Adjoint Boundary Value Problems, M. Engeli et al., Birkhäuser, Basel (1959). · Zbl 0089.12103
[30] H. R. Schwarz, Die Methode der konjugierten Gradienten in der Ausgleichsrechnung, Zeitschrift für Vermessungswesen 95 (1970), 130–140. · Zbl 0215.55405
[31] E. Stiefel, Ausgleichung ohne Aufstellung der Gausschen Normalgleichungen, Wiss. Z. Technische Hochschule Dresden 2 (1952/3), 441–442.
[32] G. W. Stewart,Introduction to Matrix Computation, Academic Press, New York (1973). · Zbl 0302.65021
[33] K. Tanabe,Projection method for solving a singular system of linear equations and its application, Numer. Math.17 (1971), 203–217. · Zbl 0228.65032
[34] A. van der Sluis,Condition numbers and equilibration of matrices, Numer. Math. 14 (1969), 14–23. · Zbl 0182.48906
[35] T. M. Whitney and R. K. Meany,Two algorithms related to the method of steepest descent, SIAM J. Numer. Anal. 4 (1967), 109–118. · Zbl 0173.17806
[36] H. Wozniakowski,Numerical stability of the Chebyshev method for the solution of large linear systems, Numer. Math. (1977), 191–209. · Zbl 0341.65024
[37] D. M. Young,Iterative solution of large linear systems, Academic Press, New York (1971). · Zbl 0231.65034
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.