×

zbMATH — the first resource for mathematics

Stable vector bundles of rank 2 on \(P^ 3\). (English) Zbl 0411.14002

MSC:
14L24 Geometric invariant theory
14D22 Fine and coarse moduli spaces
14F05 Sheaves, derived categories of sheaves, etc. (MSC2010)
14H10 Families, moduli of curves (algebraic)
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Atiyah, M. F., Rees, E.: Vector bundles on projective 3-space. Invent. math.35, 131-153 (1976) · Zbl 0332.32020
[2] Atiyah, M.F., Ward, R.S.: Instantons and algebraic geometry. Comm. math. Phys.55, 117-124 (1977) · Zbl 0362.14004
[3] Atiyah, M.F., Hitchin, N.J., Drinfeld, V.G., Manin, Ju.I.: Construction of instantons. Phys. Lett.65A, 185-187 (1978) · Zbl 0424.14004
[4] Barth, W., Van de Ven, A.: A decomposability criterion for algebraic 2-bundles on projective spaces. Invent. math.25, 91-106 (1974) · Zbl 0295.14006
[5] Barth, W., Van de Ven, A.: On the geometry in codimension 2 of Grassmann manifolds. In: Classification of algebraic varieties and compact complex manifolds. Lecture Notes in Mathematics412, pp. 1-35. Berlin, Heidelberg, New York: Springer 1974 · Zbl 0299.14024
[6] Barth, W.: Some properties of stable rank-2 vector bundles on IP n . Math. Ann.226, 125-150 (1977) · Zbl 0417.32013
[7] Barth, W.: Moduli of vector bundles on the projective plane. Invent. math.42, 63-91 (1977) · Zbl 0386.14005
[8] Barth, W., Hulek, K.: Monads and moduli of vector bundles (preprint) · Zbl 0395.14007
[9] Ferrand, D.: Courbes gauches et fibrés de rang 2, C.R. Acad. Sci. (Paris)281, A345-347 (1975) · Zbl 0315.14019
[10] Ferrand, D.: Construction de fibrés de rang deux. Séminaire E.N.S, (1977-78) exposé 5 (preprint)
[11] Gieseker, D.: On the moduli of vector bundles on an algebraic surface. Ann. Math.106, 45-60 (1977) · Zbl 0381.14003
[12] Grauert, H., Mülich, G.: Vektorbündel vom Rang 2 über demn-dimensionalen komplex-projektiven Raum. Manusc. math.16, 75-100 (1975) · Zbl 0318.32027
[13] Grauert, H., Schneider, M.: Komplexe Unterräume und holomorphe Vektorraumbündel vom Rang zwei. Math. Ann.230, 75-90 (1977) · Zbl 0412.32014
[14] Grothendieck, A.: Techniques de construction et théorèmes d’existence en géométrie algébrique IV: Les schémas de Hilbert. Séminaire Bourbaki221 (1960/61)
[15] Gruson, L., Peskine, C.: Genre des courbes de l’espace projectif (preprint) · Zbl 0517.14007
[16] Harris, J.: Untitled preprint (Nov. 1976)
[17] Hartshorne, R.: A property of A-sequences. Bull. Soc. Math. France94, 61-66 (1966) · Zbl 0142.28605
[18] Hartshorne, R.: Varieties of small codimension in projective space. Bull. AMS80, 1017-1032 (1974) · Zbl 0304.14005
[19] Hartshorne, R.: The classification of curves in IP3 and related topics (lecture notes in Japanese), Ishida, M., Sato, E., eds. Math. Res. Lec. Notes2, Kyoto Univ. 74pp. (1977)
[20] Hartshorne, R.: Algebraic Geometry. Graduate Texts in Math.52, 496pp. Berlin, Heidelberg, New York: Springer 1977 · Zbl 0367.14001
[21] Hartshorne, R.: Stable vector bundles and instantons. Comm. Math. Phys.59, 1-15 (1978) · Zbl 0383.14006
[22] Hirzebruch, F.: Topological methods in Algebraic Geometry, 3rd ed., Grundlehren der math. Wiss.131, 232 pp. Berlin, Heidelberg, New York: Springer 1966 · Zbl 0138.42001
[23] Horrocks, G.: Vector bundles on the punctured spectrum of a local ring. Proc. Lond. Math. Soc. (3),14, 689-713 (1964) · Zbl 0126.16801
[24] Horrocks, G.: A construction for locally free sheaves. Topology7, 117-120 (1968) · Zbl 0162.27305
[25] Horrocks, G., Mumford, D.: A rank 2 vector bundles on IP4 with 15,000 symmetries. Topology12, 63-81 (1973) · Zbl 0255.14017
[26] Horrocks, G.: Examples of rank three vector bundles on five dimensional projective space (preprint) · Zbl 0388.14009
[27] Kleiman, S.L.: Geometry on Grassmannians and applications to splitting bundles and smoothing cycles. Publ. Math. IHES36, 281-298 (1969) · Zbl 0208.48501
[28] Maruyama, M.: On a family of algebraic vector bundles (in) Number Theory, Algebraic Geometry, and Commutative Algebra, in honor of Y. Akizuki. Kinokuniya, Tokyo 95-146 (1965)
[29] Maruyama, M.: Stable vector bundles on an algebraic surface. Nagoya Math. J.58, 25-68 (1975) · Zbl 0337.14026
[30] Maruyama, M.: Openness of a family of torsion free sheaves. J. Math. Kyoto Univ.16, 627-637 (1976) · Zbl 0404.14004
[31] Maruyama, M.: Moduli of stable sheaves, I, J. Math., Kyoto Univ.17, 91-126 (1977) · Zbl 0374.14002
[32] Maruyama, M.: Moduli of stable sheaves, II (preprint) · Zbl 0395.14006
[33] Mumford, D.: Lectures on curves on an algebraic surface. Annals of Math. Studies59, Princeton Univ. Press, Princeton (1966) 200 pp. · Zbl 0187.42701
[34] Mumford, D.: Varieties defined by quadratic equations (with an Appendix by G. Kempf) in Questions on Algebraic Varieties. C.I.M.E. ed. Cremonese, Rome (1970), 29-100
[35] Mumford, D.: Theta Characteristics of an algebraic curve. Ann. Sc. ENS4, 181-192 (1971) · Zbl 0216.05904
[36] Narasimhan, M.S., Seshadri, C.S.: Stable and unitary vector bundles on a compact Riemann Surface. Ann. Math.82, 540-567 (1965) · Zbl 0171.04803
[37] Peskine, C., Szpiro, L.: Liaison des variétés algébriques (I). Invent. math.26, 271-302 (1974) · Zbl 0298.14022
[38] Rao, A.P.: Liaison among curves in IP3 (preprint)
[39] Saint-Donat, B.: On Petri’s analysis of the linear system of quadrics through a canonical curve. Math. Ann.206, 157-175 (1963) · Zbl 0315.14010
[40] Sato, E.: On the decomposability of infinitely extendable vector bundles on projective spaces and Grassmann varieties. J. Math. Kyoto Univ.17, 127-150 (1977) · Zbl 0362.14005
[41] Sato, E.: The decomposability of an infinitely extendable vector bundle on the projective space, II (preprint) · Zbl 0405.14011
[42] Sato, E.: On infinitely extendable vector bundles onG/P (preprint)
[43] Serre, J.-P.: Sur les modules projectifs. Séminaire Dubreil-Pisot (1960/61), Secr. Math. Paris, exposé 2 (1961)
[44] Takemoto, F.: Stable vector bundles on algebraic surfaces. Nagoya Math. J.47 (1972) · Zbl 0245.14007
[45] Tango, H.: On morphisms from projective space IP n to the Grassmann varietyGr(n, d) (preprint) · Zbl 0326.14015
[46] Tyurin, A.N.: Finite dimensional vector bundles over infinite varieties. Math. USSR Isvestija10, 1187-1204 (1976) · Zbl 0379.14004
[47] Wever, G.P.: The moduli of a class of rank 2 vector bundles on projective 3 space, thesis. Univ. Calif. Berkeley (1977)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.