×

zbMATH — the first resource for mathematics

Extreme essential derivatives of Borel and Lebesgue measurable functions. (English) Zbl 0411.28006

MSC:
28A15 Abstract differentiation theory, differentiation of set functions
28A20 Measurable and nonmeasurable functions, sequences of measurable functions, modes of convergence
PDF BibTeX XML Cite
Full Text: EuDML
References:
[1] BANACH S.: Sur les fonctions dérivées des fonctions mesurables. Fund. Math., 3,1921,128-132. · JFM 48.0279.03
[2] HAUSDORFF F.: Mengenlehre. Dritte Auflage, Berlin und Leipzig 1935. · Zbl 0012.20302
[3] HÁJEK O.: Note sur la mésurabilité B de la derivée supérieure. Fund. Math., 44, 1957, 238-240. · Zbl 0081.27902
[4] MIŠÍK L.: Über approximative derivierte Zahlen. Czech. Math. J. 25 (100), 1975, 154-159. · Zbl 0308.26004
[5] MIŠÍK L.: Halbborelsche Funktionen und extreme Ableitungen. Math. slov. 27, 1977, 409-421. · Zbl 0371.26003
[6] MIŠÍK L.: Extreme essential unilateral derivatives of continuous functions. Commen. Math. 21, 1978, 235-238. · Zbl 0385.26008
[7] SIERPIŃSKI W.: Sur les fonctions dérivées des fonctions discontinues. Fund. Math., 3, 1921, 123-127. · JFM 48.0279.02
[8] STANISZEWSKA J.: Sur la classe de Baire des dérivées de Dini. Fund. Math., 47, 1959. · Zbl 0098.26504
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.