×

zbMATH — the first resource for mathematics

The Levi problem on complex spaces with singularities. (English) Zbl 0411.32011

MSC:
32E10 Stein spaces, Stein manifolds
32L10 Sheaves and cohomology of sections of holomorphic vector bundles, general results
32D05 Domains of holomorphy
32U05 Plurisubharmonic functions and generalizations
32C15 Complex spaces
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Andreotti, A., Narasimhan, R.: Oka’s Heftungslemma and the Levi problem for complex spaces. Trans. Amer. Math. Soc.111, 345-366 (1964) · Zbl 0134.06001
[2] Bremermann, H.: Über die Äquivalenz der pseudokonvexen Gebiete und der Holomorphiegebiete im Raum vonn komplexen Veränderlichen. Math. Ann.128, 63-91 (1954) · Zbl 0056.07801 · doi:10.1007/BF01360125
[3] Boutet de Monvel, L., Hirschowitz, A., Pham, F.: Espaces de Hartogs. C.R. Acad. Sci. Paris273, Sér. A, 514-516 (1961)
[4] Fornaess, J.E.: An increasing sequence of Stein manifolds whose limit is not Stein. Math. Ann.223, 275-277 (1976) · Zbl 0334.32017 · doi:10.1007/BF01360958
[5] Fornaess, J.E.: The Levi problem in Stein spaces. Math. Scand. (to appear) · Zbl 0436.32012
[6] Grauert, H.: On Levi’s problem and the imbedding of real-analytic manifolds. Ann. of Math.68, 460-472 (1968) · Zbl 0108.07804 · doi:10.2307/1970257
[7] Grauert, H.: Ein Theorem der analytischen Garbentheorie und die Modulräume komplexer Strukturen. Publ. Math. I.H.E.S.5, 233-292 (1960) · Zbl 0100.08001
[8] Grauert, H.: Über Modifikationen und exzeptionelle analytische Mengen. Math. Ann.146, 331-368 (1962) · Zbl 0173.33004 · doi:10.1007/BF01441136
[9] Hörmander, L.: An introduction to complex analytis in several variables. Princeton: Van Nostrand 1966
[10] Narasimhan, R.: The Levi problem for complex spaces. I. Math. Ann.142, 355-365 (1961). II. Math. Ann.146, 195-216 (1962) · Zbl 0106.28603 · doi:10.1007/BF01451029
[11] Narasimhan, R.: A note on Stein spaces and their normalizations. Ann. Scuola Norm. Sup. Pisa16, 327-333 (1962) · Zbl 0112.31102
[12] Norguet, F.: Sur les domaines d’holomorphic des fonctions uniformes de plusieurs variables complexes. Bull. Soc. Math. France82, 137-159 (1954) · Zbl 0056.07701
[13] Norguet, F., Siu, Y.-T.: Holomorphic convexity of spaces of analytic cycles. Bull. Soc. Math. France105, 191-223 (1977) · Zbl 0382.32010
[14] Oka, K.: Domaines pseudoconvexes, Tôhoku Math. J.49, 15-52 (1942) · Zbl 0060.24006
[15] Oka, K.: Domaines finis sans point critique intérieur. Japanese J. Math.23, 97-155 (1953) · Zbl 0053.24302
[16] Richberg, R.: Stetige streng pseudokonvexe Funktionen. Math. Ann.175, 257-286 (1968) · Zbl 0153.15401 · doi:10.1007/BF02063212
[17] Rossi, H.: The local maximum modulus principle. Ann. of Math.72, 1-11 (1960) · Zbl 0099.32703 · doi:10.2307/1970145
[18] Siu, Y.-T.: Every Stein subvariety admits a Stein neighborhood. Invent. Math.38, 89-100 (1976) · Zbl 0343.32014 · doi:10.1007/BF01390170
[19] Skoda, H.: Applications de techniquesL 2 à la théorie des idéaux d’une algèbre de fonctions holomorphes avec poids. Ann. Sci. Ecole Norm. Sup. Paris5, 545-579 (1972) · Zbl 0254.32017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.