A duality principle for non-convex optimisation and the calculus of variations. (English) Zbl 0411.49012


49J45 Methods involving semicontinuity and convergence; relaxation
Full Text: DOI


[1] Coffman, C. V., ”On variational principles for sublinear boundary value problems”, Jour. Diff. Eqns., 17 46–60 (1975). · Zbl 0292.49005
[2] Ekeland, I., & Temam, R., ”Analyse convexe et problemes variationeis”, Dunod, Gauthiers. Paris 1974. (English translation ”Convex analysis and variational problems”, North-Holland, Amsterdam 1976.) · Zbl 0281.49001
[3] Fenchel, W., ”Convex cones, sets and functions”, Notes de Cours polycopiees, Princeton University, 1951. · Zbl 0053.12203
[4] Kolodner, I.I., ”Heavy rotating string –a non-linear eigenvalue problem”, Comm. Pure Appl. Math., VIII 395–408 (1955). · Zbl 0065.17202
[5] Rockafellar, T.R., ”Duality and stability in extremal problems involving convex functions”, Pac. Jour. Math., 21, 167–187 (1967). · Zbl 0154.44902
[6] Rockafellar, T.R., ”Convex Analysis”, Princeton University Press, 1970. · Zbl 0193.18401
[7] Rockafellar, T.R., ”Convex integral functions and duality”, in Contributions to Nonlinear Functional Analysis (E. Zarantonello, ed.), Academic Press, 1971. · Zbl 0295.49006
[8] Rockafellar, T.R., ”Conjugate convex functions in optimal control and the calculus of variations”, Jour. Math. Anal. Appl., 32, 174–222 (1970). · Zbl 0218.49004
[9] Toland, J. F., ”On the stability of rotating heavy chains”, to appear, Jour. Diff. Eqns. · Zbl 0372.49016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.