×

The isoperimetric inequality. (English) Zbl 0411.52006


MSC:

52A40 Inequalities and extremum problems involving convexity in convex geometry

Software:

AS 2
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Peter Buser, Riemannsche Flächen mit Eigenwerten in (0, 1/4), Comment. Math. Helv. 52 (1977), no. 1, 25 – 34. , https://doi.org/10.1007/BF02567355 T. Carleman, Über ein Minimalproblem der mathematischen Physik, Math. Z. 1 (1918), no. 2-3, 208 – 212 (German). , https://doi.org/10.1007/BF01203612 Torsten Carleman, Zur Theorie der Minimalflächen, Math. Z. 9 (1921), no. 1-2, 154 – 160 (German). , https://doi.org/10.1007/BF01378342 G. D. Chakerian, The isoperimetric theorem for curves on minimal surfaces, Proc. Amer. Math. Soc. 69 (1978), no. 2, 312 – 313. , https://doi.org/10.1090/S0002-9939-1978-0474052-5 Isaac Chavel, On A. Hurwitz’ method in isoperimetric inequalities, Proc. Amer. Math. Soc. 71 (1978), no. 2, 275 – 279. , https://doi.org/10.1090/S0002-9939-1978-0493885-2 I. Chavel and E. A. Feldman, An optimal Poincaré inequality for convex domains of non-negative curvature, Arch. Rational Mech. Anal. 65 (1977), no. 3, 263 – 273. , https://doi.org/10.1007/BF00280444 Isaac Chavel and Edgar A. Feldman, Isoperimetric inequalities on curved surfaces, Adv. in Math. 37 (1980), no. 2, 83 – 98. , https://doi.org/10.1016/0001-8708(80)90028-6 Jeff Cheeger, A lower bound for the smallest eigenvalue of the Laplacian, Problems in analysis (Papers dedicated to Salomon Bochner, 1969) Princeton Univ. Press, Princeton, N. J., 1970, pp. 195 – 199. Shiu Yuen Cheng, Eigenvalue comparison theorems and its geometric applications, Math. Z. 143 (1975), no. 3, 289 – 297. , https://doi.org/10.1007/BF01214381 Shiu Yuen Cheng, Eigenfunctions and eigenvalues of Laplacian, Differential geometry (Proc. Sympos. Pure Math., Vol. XXVII, Stanford Univ., Stanford, Calif., 1973) Amer. Math. Soc., Providence, R.I., 1975, pp. 185 – 193. Shiu Yuen Cheng, Eigenfunctions and nodal sets, Comment. Math. Helv. 51 (1976), no. 1, 43 – 55. , https://doi.org/10.1007/BF02568142 I. A. Danelič, Estimate of the area of a surface of bounded absolute mean integral curvature in terms of its absolute integral mean curvature and the sum of the lengths of the boundary curves, Sibirsk. Mat. Ž. 7 (1966), 1199 – 1203 (Russian). B. V. Dekster, An inequality of isoperimetric type for a domain in a Riemannian space, Mat. Sb. (N.S.) 90(132) (1973), 257 – 274, 326 (Russian). V. I. Diskant, Stability of the solution of a Minkowski equation, Sibirsk. Mat. Ž. 14 (1973), 669 – 673, 696 (Russian). V. I. Diskant, Sharpenings of the isoperimetric inequality, Sibirsk. Mat. Ž. 14 (1973), 873 – 877, 911 (Russian). V. I. Diskant, A generalization of Bonnesen’s inequalities, Dokl. Akad. Nauk SSSR 213 (1973), 519 – 521 (Russian). Manfredo P. do Carmo, Differential geometry of curves and surfaces, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1976. Translated from the Portuguese. Michael Edelstein and Binyamin Schwarz, On the length of linked curves, Israel J. Math. 23 (1976), no. 1, 94 – 95. , https://doi.org/10.1007/BF02757236 Herbert Federer, Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer-Verlag New York Inc., New York, 1969. Herbert Federer and Wendell H. Fleming, Normal and integral currents, Ann. of Math. (2) 72 (1960), 458 – 520. , https://doi.org/10.2307/1970227 Jerry M. Feinberg, The isoperimetric inequality for doubly-connected minimal surfaces in \?\(^{n}\), J. Analyse Math. 32 (1977), 249 – 278. , https://doi.org/10.1007/BF02803583 Jerry M. Feinberg, Some Wirtinger-like inequalities, SIAM J. Math. Anal. 10 (1979), no. 6, 1258 – 1271. , https://doi.org/10.1137/0510113 László Fejes Tóth, Lagerungen in der Ebene auf der Kugel und im Raum, Springer-Verlag, Berlin-New York, 1972 (German). Zweite verbesserte und erweiterte Auflage; Die Grundlehren der mathematischen Wissenschaften, Band 65. F. Fiala, Le problème des isopérimètres sur les surfaces ouvertes à courbure positive, Comment. Math. Helv. 13 (1941), 293 – 346 (French). , https://doi.org/10.1007/BF01378068 T. Figiel, J. Lindenstrauss, and V. D. Milman, The dimension of almost spherical sections of convex bodies, Acta Math. 139 (1977), no. 1-2, 53 – 94. , https://doi.org/10.1007/BF02392234 Robert Finn, On a class of conformal metrics, with application to differential geometry in the large, Comment. Math. Helv. 40 (1965), 1 – 30. , https://doi.org/10.1007/BF02564362 Wm. J. Firey, Mathematical Notes: Affinities Which Preserve Lower Dimensional Volumes, Amer. Math. Monthly 72 (1965), no. 6, 645. , https://doi.org/10.2307/2313861 Wendell H. Fleming, On the oriented Plateau problem, Rend. Circ. Mat. Palermo (2) 11 (1962), 69 – 90. , https://doi.org/10.1007/BF02849427 L. E. Fraenkel and M. S. Berger, A global theory of steady vortex rings in an ideal fluid, Acta Math. 132 (1974), 13 – 51. , https://doi.org/10.1007/BF02392107 Galileo Galilei, Two new sciences, The University of Wisconsin Press, Madison, Wis., 1974. Including ”Centers of gravity” and ”Force of percussion”; Translated, with introduction and notes, by Stillman Drake. P. R. Garabedian, Partial differential equations, John Wiley & Sons, Inc., New York-London-Sydney, 1964. Theo Gasser and Joseph Hersch, Über Eigenfrequenzen einer mehrfach zusammenhängenden Membran: Erweiterung von isoperimetrischen Sätzen von Pólya und Szegö, Z. Angew. Math. Phys. 19 (1968), 672 – 675 (German, with English summary). , https://doi.org/10.1007/BF01594974 F. W. Gehring, Symmetrization of rings in space, Trans. Amer. Math. Soc. 101 (1961), 499 – 519. , https://doi.org/10.1090/S0002-9947-1961-0132841-2 F. W. Gehring, Rings and quasiconformal mappings in space, Trans. Amer. Math. Soc. 103 (1962), 353 – 393. , https://doi.org/10.1090/S0002-9947-1962-0139735-8 F. W. Gehring, The \?^{\?}-integrability of the partial derivatives of a quasiconformal mapping, Proceedings of the Symposium on Complex Analysis (Univ. Kent, Canterbury, 1973) Cambridge Univ. Press, 1974, pp. 73 – 74. London Math. Soc. Lecture Note Ser., No. 12. F. W. Gehring, The Hausdorff measure of sets which link in Euclidean space, Contributions to analysis (a collection of papers dedicated to Lipman Bers), Academic Press, New York, 1974, pp. 159 – 167. H. Hadwiger, Vorlesungen über Inhalt, Oberfläche und Isoperimetrie, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1957 (German). H. Hadwiger, Gitterperiodische Punktmengen und Isoperimetrie, Monatsh. Math. 76 (1972), 410 – 418 (German). , https://doi.org/10.1007/BF01297304 Kit Hanes, Isoperimetric inequalities for manifolds with boundary, J. Differential Geometry 7 (1972), 525 – 534. G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities, Cambridge, at the University Press, 1952. 2d ed. Philip Hartman, Geodesic parallel coordinates in the large, Amer. J. Math. 86 (1964), 705 – 727. , https://doi.org/10.2307/2373154 Philip Hartman, Some characterizations of the Euclidean sphere, Nonlinear Anal. 1 (1976), no. 1, 37 – 48. , https://doi.org/10.1016/0362-546X(76)90006-7 W. K. Hayman, Multivalent functions, Cambridge Tracts in Mathematics and Mathematical Physics, No. 48, Cambridge University Press, Cambridge, 1958. W. K. Hayman, Some bounds for principal frequency, Applicable Anal. 7 (1977/78), no. 3, 247 – 254. , https://doi.org/10.1080/00036817808839195 Erhard Heinz, An inequality of isoperimetric type for surfaces of constant mean curvature, Arch. Rational Mech. Anal. 33 (1969), 155 – 168. , https://doi.org/10.1007/BF00247758 Erhard Heinz, Elementare Bemerkung zur isoperimetrischen Ungleichung im \?³, Math. Z. 132 (1973), 319 – 322 (German). , https://doi.org/10.1007/BF01179737 Erhard Heinz and Stefan Hildebrandt, The number of branch points of surfaces of bounded mean curvature, J. Differential Geometry 4 (1970), 227 – 235. Joseph Hersch, Quatre propriétés isopérimétriques de membranes sphériques homogènes, C. R. Acad. Sci. Paris Sér. A-B 270 (1970), A1645 – A1648 (French). B. Herz and J. Kaapke, Ein isoperimetrisches Problem mit Nebenbedingung, Elem. Math. 28 (1973), 63 – 65 (German). Stefan Hildebrandt, Über Flächen konstanter mittlerer Krümmung, Math. Z. 112 (1969), 107 – 144 (German). , https://doi.org/10.1007/BF01115036 S. Hildebrandt and H. C. Wente, Variational problems with obstacles and a volume constraint, Math. Z. 135 (1973/74), 55 – 68. , https://doi.org/10.1007/BF01214305 Keijo Hildén, Symmetrization of functions in Sobolev spaces and the isoperimetric inequality, Manuscripta Math. 18 (1976), no. 3, 215 – 235. , https://doi.org/10.1007/BF01245917 David Hoffman, Lower bounds on the first eigenvalue of the Laplacian of Riemannian submanifolds, Minimal submanifolds and geodesics (Proc. Japan-United States Sem., Tokyo, 1977) North-Holland, Amsterdam-New York, 1979, pp. 61 – 72. David Hoffman, Remarks on a geometric constant of Yau, J. Math. Soc. Japan 32 (1980), no. 1, 93 – 97. , https://doi.org/10.2969/jmsj/03210093 David Hoffman and Joel Spruck, Sobolev and isoperimetric inequalities for Riemannian submanifolds, Comm. Pure Appl. Math. 27 (1974), 715 – 727. , https://doi.org/10.1002/cpa.3160270601 Cornelius O. Horgan and Lewis T. Wheeler, Isoperimetric inequalities for the Dirichlet eigenvalue problem, Quart. Appl. Math. 35 (1977/78), no. 3, 406 – 409. , https://doi.org/10.1090/S0033-569X-1977-0481624-1 Heinz Hopf, Über Flächen mit einer Relation zwischen den Hauptkrümmungen, Math. Nachr. 4 (1951), 232 – 249 (German). , https://doi.org/10.1002/mana.3210040122 Chuan-chih Hsiung, Isoperimetric inequalities for two-dimensional Riemannian manifolds with boundary, Ann. of Math. (2) 73 (1961), 213 – 220. , https://doi.org/10.2307/1970287 Alfred Huber, On the isoperimetric inequality on surfaces of variable Gaussian curvature, Ann. of Math. (2) 60 (1954), 237 – 247. , https://doi.org/10.2307/1969630 Alfred Huber, Zur isoperimetrischen Ungleichung auf gekrümmten Flächen, Acta Math. 97 (1957), 95 – 101 (German). , https://doi.org/10.1007/BF02392394 Alfred Huber, Zum potentialtheoretischen Aspekt der Alexandrowschen Flächentheorie, Comment. Math. Helv. 34 (1960), 99 – 126 (German). , https://doi.org/10.1007/BF02565931 Alfred Huber, Zum Isoperimeterproblem auf vollständigen Flächen mit summierbarer Gaußscher Krümmung, Arch. Rational Mech. Anal. 24 (1967), 173 – 192 (German). , https://doi.org/10.1007/BF00281342 V. K. Ionin, Isoperimetric and certain other inequalities for a manifold of bounded curvature, Sibirsk. Mat. Ž. 10 (1969), 329 – 342 (Russian). V. K. Ionin, Isoperimetric inequalities for surfaces of negative curvature, Sibirsk. Mat. Ž. 13 (1972), 933 – 938 (Russian). H. H. Johnson and J. Osaka, An isoperimetric inequality for polyhedra, Amer. Math. Monthly 81 (1974), 58 – 61. , https://doi.org/10.2307/2318918 Mark Kac, Can one hear the shape of a drum?, Amer. Math. Monthly 73 (1966), no. 4, 1 – 23. , https://doi.org/10.2307/2313748 Hermann Karcher, Umkreise und Inkreise konvexer Kurven in der sphärischen und der hyperbolischen Geometrie, Math. Ann. 177 (1968), 122 – 132 (German). , https://doi.org/10.1007/BF01350788 Hermann Karcher, Anwendungen der Alexandrowschen Winkelvergleichssätze, Manuscripta Math. 2 (1970), 77 – 102 (German, with English summary). , https://doi.org/10.1007/BF01168481 Helmut Kaul, Isoperimetrische Ungleichung und Gauss-Bonnet-Formel für \?-Flächen in Riemannschen Mannigfaltigkeiten, Arch. Rational Mech. Anal. 45 (1972), 194 – 221 (German). , https://doi.org/10.1007/BF00281532 Hans Wilhelm Alt, Verzweigungspunkte von \?-Flächen. I, Math. Z. 127 (1972), 333 – 362 (German). , https://doi.org/10.1007/BF01111392 Robert Gulliver and Joel Spruck, Surfaces of constant mean curvature which have a simple projection, Math. Z. 129 (1972), 95 – 107. , https://doi.org/10.1007/BF01187965 Stefan Hildebrandt, Maximum principles for minimal surfaces and for surfaces of continuous mean curvature, Math. Z. 128 (1972), 253 – 269. , https://doi.org/10.1007/BF01111709 Helmut Kaul, Remarks on the isoperimetric inequality for multiply-connected \?-surfaces, Math. Z. 128 (1972), 271 – 276. , https://doi.org/10.1007/BF01111710 Helmut Kaul, Ein Einschliessungssatz für \?-Flächen in Riemannschen Mannigfaltigkeiten, Manuscripta Math. 5 (1971), 103 – 112 (German, with English summary). , https://doi.org/10.1007/BF01325020 Helmut Kaul, Isoperimetrische Ungleichung und Gauss-Bonnet-Formel für \?-Flächen in Riemannschen Mannigfaltigkeiten, Arch. Rational Mech. Anal. 45 (1972), 194 – 221 (German). , https://doi.org/10.1007/BF00281532 Hans Wilhelm Alt, Verzweigungspunkte von \?-Flächen. I, Math. Z. 127 (1972), 333 – 362 (German). , https://doi.org/10.1007/BF01111392 Robert Gulliver and Joel Spruck, Surfaces of constant mean curvature which have a simple projection, Math. Z. 129 (1972), 95 – 107. , https://doi.org/10.1007/BF01187965 Stefan Hildebrandt, Maximum principles for minimal surfaces and for surfaces of continuous mean curvature, Math. Z. 128 (1972), 253 – 269. , https://doi.org/10.1007/BF01111709 Helmut Kaul, Remarks on the isoperimetric inequality for multiply-connected \?-surfaces, Math. Z. 128 (1972), 271 – 276. , https://doi.org/10.1007/BF01111710 Nicholas D. Kazarinoff, Geometric inequalities, New Mathematical Library, vol. 4, Random House, New York-Toronto, 1961. Marie-Thérèse Kohler-Jobin, Une inégalité isopérimétrique entre la fréquence fondamentale d’une membrane inhomogène et l’énergie d’équilibre du problème de Poisson correspondant, C. R. Acad. Sci. Paris Sér. A-B 283 (1976), no. 2, Aii, A65 – A68 (French, with English summary). Marie-Thérèse Kohler-Jobin, Une propriété de monotonie isopérimétrique qui contient plusieurs théorèmes classiques, C. R. Acad. Sci. Paris Sér. A-B 284 (1977), no. 15, A917 – A920. E. Krahn, Über eine von Rayleigh formulierte Minimaleigenschaft des Kreises, Math. Ann. 94 (1925), no. 1, 97 – 100 (German). , https://doi.org/10.1007/BF01208645 H. B. Lawson Jr. and R. Osserman, Non-existence, non-uniqueness and irregularity of solutions to the minimal surface system, Acta Math. 139 (1977), no. 1-2, 1 – 17. , https://doi.org/10.1007/BF02392232 Henri Lebesgue, En marge du calcul des variations. Une introduction au calcul des variations et aux inégalités géométriques, Monographies de ”L’Enseignement Mathématique”, No. 12, Institut de Mathématiques, Université, Geneva; Imprimerie Kundig, Geneva, 1963 (French). Heinrich Liebmann, Ueber die Verbiegung der geschlossenen Flächen positiver Krümmung, Math. Ann. 53 (1900), no. 1-2, 81 – 112 (German). , https://doi.org/10.1007/BF01456030 Tung Po Lin, Maximum area under constraint, Math. Mag. 50 (1977), no. 1, 32 – 34. , https://doi.org/10.2307/2689750 S. Lozinski, On subharmonic functions and their application to the theory of surfaces, Bull. Acad. Sci. URSS. Sér. Math. [Izvestia Akad. Nauk SSSR] 8 (1944), 175 – 194 (Russian, with English summary). J. M. Luttinger, Generalized isoperimetric inequalities, J. Mathematical Phys. 14 (1973), 586 – 593. , https://doi.org/10.1063/1.1666363 V. G. Maz\(^{\prime}\)ja, Classes of domains and imbedding theorems for function spaces, Soviet Math. Dokl. 1 (1960), 882 – 885. H. P. McKean, An upper bound to the spectrum of \Delta on a manifold of negative curvature, J. Differential Geometry 4 (1970), 359 – 366. P. McMullen, Area preserving homeomorphisms, Elem. Math. 30 (1975), no. 4, 86 – 87. J. H. Michael and L. M. Simon, Sobolev and mean-value inequalities on generalized submanifolds of \?\(^{n}\), Comm. Pure Appl. Math. 26 (1973), 361 – 379. , https://doi.org/10.1002/cpa.3160260305 Mario Miranda, Diseguaglianze di Sobolev sulle ipersuperfici minimali, Rend. Sem. Mat. Univ. Padova 38 (1967), 69 – 79 (Italian). D. S. Mitrinović, Analytic inequalities, Springer-Verlag, New York-Berlin, 1970. In cooperation with P. M. Vasić. Die Grundlehren der mathematischen Wissenschaften, Band 165. J. Moser, A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J. 20 (1970/71), 1077 – 1092. , https://doi.org/10.1512/iumj.1971.20.20101 G. D. Mostow, Quasi-conformal mappings in \?-space and the rigidity of hyperbolic space forms, Inst. Hautes Études Sci. Publ. Math. 34 (1968), 53 – 104. Zeev Nehari, On the principal frequency of a membrane, Pacific J. Math. 8 (1958), 285 – 293. Johannes C. C. Nitsche, The isoperimetric inequality for multiply-connected minimal surfaces, Math. Ann. 160 (1965), 370 – 375. , https://doi.org/10.1007/BF01360908 J. C. C. Nitsche, An isoperimetric property of surfaces with moveable boundaries, Amer. Math. Monthly 77 (1970), 359 – 362. , https://doi.org/10.2307/2316142 Johannes C. C. Nitsche, Vorlesungen über Minimalflächen, Springer-Verlag, Berlin-New York, 1975 (German). Die Grundlehren der mathematischen Wissenschaften, Band 199. Robert Osserman, Isoperimetric and related inequalitites, Differential geometry (Proc. Sympos. Pure Math., Vol. XXVII, Part 1, Stanford Univ., Stanford, Calif., 1973) Amer. Math. Soc., Providence, R.I., 1975, pp. 207 – 215. Robert Osserman, Some remarks on the isoperimetric inequality and a problem of Gehring, J. Analyse Math. 30 (1976), 404 – 410. , https://doi.org/10.1007/BF02786727 Robert Osserman, A note on Hayman’s theorem on the bass note of a drum, Comment. Math. Helv. 52 (1977), no. 4, 545 – 555. , https://doi.org/10.1007/BF02567388 Robert Osserman, Bonnesen-style isoperimetric inequalities, Amer. Math. Monthly 86 (1979), no. 1, 1 – 29. , https://doi.org/10.2307/2320297 R. Osserman and M. Schiffer, Doubly-connected minimal surfaces, Arch. Rational Mech. Anal. 58 (1975), no. 4, 285 – 307. , https://doi.org/10.1007/BF00250292 Tominosuke Ôtsuki, A remark on the Sobolev inequality for Riemannian submanifolds, Proc. Japan Acad. 51 (1975 suppl), 785 – 789. L. E. Payne, Isoperimetric inequalities and their applications, SIAM Rev. 9 (1967), 453 – 488. , https://doi.org/10.1137/1009070 L. E. Payne and H. F. Weinberger, Some isoperimetric inequalities for membrane frequencies and torsional rigidity, J. Math. Anal. Appl. 2 (1961), 210 – 216. , https://doi.org/10.1016/0022-247X(61)90031-2 Jaak Peetre, A generalization of Courant’s nodal domain theorem, Math. Scand. 5 (1957), 15 – 20. , https://doi.org/10.7146/math.scand.a-10484 G. Polya, Induction and analogy in mathematics. Mathematics and plausible reasoning, vol. I, Princeton University Press, Princeton, N. J., 1954. G. Pólya, Two more inequalities between physical and geometrical quantities, J. Indian Math. Soc. (N.S.) 24 (1960), 413 – 419 (1961). G. Pólya and G. Szegö, Isoperimetric Inequalities in Mathematical Physics, Annals of Mathematics Studies, no. 27, Princeton University Press, Princeton, N. J., 1951. George Polya and Alexander Weinstein, On the torsional rigidity of multiply connected cross-sections, Ann. of Math. (2) 52 (1950), 154 – 163. , https://doi.org/10.2307/1969516 Tibor Radó, The isoperimetric inequality and the Lebesgue definition of surface area, Trans. Amer. Math. Soc. 61 (1947), 530 – 555. , https://doi.org/10.1090/S0002-9947-1947-0021966-0 Tibor Radó, Length and Area, American Mathematical Society Colloquium Publications, vol. 30, American Mathematical Society, New York, 1948. John William Strutt Rayleigh Baron, The Theory of Sound, Dover Publications, New York, N. Y., 1945. 2d ed. William T. Reid, The isoperimetric inequality and associated boundary problems, J. Math. Mech. 8 (1959), 897 – 905. Robert C. Reilly, Applications of the integral of an invariant of the Hessian, Bull. Amer. Math. Soc. 82 (1976), no. 4, 579 – 580. , https://doi.org/10.1090/S0002-9904-1976-14110-9 Robert C. Reilly, Correction: ”Applications of the integral of an invariant of the Hessian” (Bull. Amer. Math. Soc. 82 (1976), no. 4, 579 – 580), Bull. Amer. Math. Soc. 82 (1976), no. 6, 965. , https://doi.org/10.1090/S0002-9904-1976-14236-X Robert C. Reilly, Applications of the Hessian operator in a Riemannian manifold, Indiana Univ. Math. J. 26 (1977), no. 3, 459 – 472. , https://doi.org/10.1512/iumj.1977.26.26036 Robert C. Reilly, On the first eigenvalue of the Laplacian for compact submanifolds of Euclidean space, Comment. Math. Helv. 52 (1977), no. 4, 525 – 533. , https://doi.org/10.1007/BF02567385 Robert C. Reilly, Geometric applications of the solvability of Neumann problems on a Riemannian manifold, Arch. Rational Mech. Anal. 75 (1980), no. 1, 23 – 29. , https://doi.org/10.1007/BF00284618 Horst Sachs, Ungleichungen für Umfang, Flächeninhalt und Trägheitsmoment konvexer Kurven, Acta Math. Acad. Sci. Hungar. 11 (1960), 103 – 115 (German, with Russian summary). , https://doi.org/10.1007/BF02020628 L. A. Santaló, On the circle of maximum radius contained in a domain, Revista Unión Mat. Argentina 10 (1945), 155 – 162 (Spanish). L. A. Santaló, Integral geometry on surfaces, Duke Math. J. 16 (1949), 361 – 375. L. A. Santaló, Introduction to integral geometry, Actualités Sci. Ind., no. 1198, Publ. Inst. Math. Univ. Nancago II. Herman et Cie, Paris, 1953. Luis A. Santaló, Integral geometry and geometric probability, Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam, 1976. With a foreword by Mark Kac; Encyclopedia of Mathematics and its Applications, Vol. 1. Erhard Schmidt, Über das isoperimetrische Problem im Raum von \? Dimensionen, Math. Z. 44 (1939), no. 1, 689 – 788 (German). , https://doi.org/10.1007/BF01210681 Erhard Schmidt, Über die isoperimetrische Aufgabe im \?-dimensionalen Raum konstanter negativer Kuümmung. I. Die isoperimetrischen Ungleichungen in der hyperbolischen Ebene und für Rotationskörper im \?-dimensionalen hyperbolischen Raum, Math. Z. 46 (1940), 204 – 230 (German). , https://doi.org/10.1007/BF01181439 Erhard Schmidt, Die isoperimetrischen Ungleichungen auf der gewöhnlichen Kugel und für Rotationskörper im \?-dimensionalen sphärischen Raum, Math. Z. 46 (1940), 743 – 794 (German). , https://doi.org/10.1007/BF01181466 Erhard Schmidt, Über eine neue Methode zur Behandlung einer Klasse isoperimetrischer Aufgaben im Grossen, Math. Z. 47 (1942), 489 – 642 (German). , https://doi.org/10.1007/BF01180976 Erhard Schmidt, Beweis der isoperimetrischen Eigenschaft der Kugel im hyperbolischen und sphärischen Raum jeder Dimensionenzahl, Math. Z. 49 (1943), 1 – 109 (German). , https://doi.org/10.1007/BF01174192 S. Z. Šefel\(^{\prime}\), On the intrinsic geometry of saddle surfaces, Sibirsk. Mat. Ž. 5 (1964), 1382 – 1396 (Russian). James Serrin, A symmetry problem in potential theory, Arch. Rational Mech. Anal. 43 (1971), 304 – 318. , https://doi.org/10.1007/BF00250468 Max Shiffman, On the isoperimetric inequality for saddle surfaces with singularities, Studies and Essays Presented to R. Courant on his 60th Birthday, January 8, 1948, Interscience Publishers, Inc., New York, 1948, pp. 383 – 394. David Singmaster and D. J. Souppouris, A constrained isoperimetric problem, Math. Proc. Cambridge Philos. Soc. 83 (1978), no. 1, 73 – 82. , https://doi.org/10.1017/S030500410005430X Emanuel Sperner Jr., Zur Symmetrisierung von Funktionen auf Sphären, Math. Z. 134 (1973), 317 – 327 (German). , https://doi.org/10.1007/BF01214695 Emanuel Sperner Jr., Symmetrisierung für Funktionen mehrerer reeler Variablen, Manuscripta Math. 11 (1974), 159 – 170 (German, with English summary). , https://doi.org/10.1007/BF01184955 Wolfgang Spiegel, Über die Symmetrisierung stetiger Funktionen im euklidischen Raum, Arch. Math. (Basel) 24 (1973), 545 – 551. , https://doi.org/10.1007/BF01228252 K. Steffen, Isoperimetric inequalities and the problem of Plateau, Math. Ann. 222 (1976), no. 2, 97 – 144. , https://doi.org/10.1007/BF01418324 Klaus Steffen, On the existence of surfaces with prescribed mean curvature and boundary, Math. Z. 146 (1976), no. 2, 113 – 135. , https://doi.org/10.1007/BF01187700 Gabriel Stolzenberg, Volumes, limits, and extensions of analytic varieties, Lecture Notes in Mathematics, No. 19, Springer-Verlag, Berlin-New York, 1966. G. Szegö, Über einige Extremalaufgaben der Potentialtheorie, Math. Z. 31 (1930), no. 1, 583 – 593 (German). , https://doi.org/10.1007/BF01246436 Giorgio Talenti, Best constant in Sobolev inequality, Ann. Mat. Pura Appl. (4) 110 (1976), 353 – 372. , https://doi.org/10.1007/BF02418013 V. A. Toponogov, An isoperimetric inequality for surfaces whose Gaussian curvature is bounded from above, Sibirsk. Mat. Ž. 10 (1969), 144 – 157 (Russian). R. T. Waechter, On hearing the shape of a drum: An extension to higher dimensions, Proc. Cambridge Philos. Soc. 72 (1972), 439 – 447. H. F. Weinberger, Symmetrization in uniformly elliptic problems, Studies in mathematical analysis and related topics, Stanford Univ. Press, Stanford, Calif., 1962, pp. 424 – 428. H. F. Weinberger, Remark on the preceding paper of Serrin, Arch. Rational Mech. Anal. 43 (1971), 319 – 320. , https://doi.org/10.1007/BF00250469 Joel L. Weiner, A generalization of the isoperimetric inequality on the 2-sphere, Indiana Univ. Math. J. 24 (1974/75), 243 – 248. , https://doi.org/10.1512/iumj.1974.24.24021 Henry C. Wente, An existence theorem for surfaces of constant mean curvature, J. Math. Anal. Appl. 26 (1969), 318 – 344. , https://doi.org/10.1016/0022-247X(69)90156-5 Henry C. Wente, A general existence theorem for surfaces of constant mean curvature., Math. Z. 120 (1971), 277 – 288. , https://doi.org/10.1007/BF01117500 Henry C. Wente, The differential equation \Delta \?=2\?(\?\?∧\?\?) with vanishing boundary values, Proc. Amer. Math. Soc. 50 (1975), 131 – 137. , https://doi.org/10.1090/S0002-9939-1975-0374673-1 Jörg M. Wills, Zum Verhältnis von Volumen zu Oberfläche bei konvexen Körpern, Arch. Math. (Basel) 21 (1970), 557 – 560 (German). , https://doi.org/10.1007/BF01220963 Shing Tung Yau, Isoperimetric constants and the first eigenvalue of a compact Riemannian manifold, Ann. Sci. École Norm. Sup. (4) 8 (1975), no. 4, 487 – 507.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.