The topology of holomorphic flows with singularity. (English) Zbl 0411.58018


37C10 Dynamics induced by flows and semiflows
32S05 Local complex singularities
57R30 Foliations in differential topology; geometric theory
Full Text: DOI Numdam EuDML


[1] A. D. Brjuno, Analytical form of differential equations,Trudy Moscow Math. Obšč (Trans. Moscow Math. Soc.), vol. 25 (1971), p. 131–288.
[2] C. Camacho, N. H. Kuiper, J. Palis, La topologie du feuilletage d’un champ de vecteurs holomorphe près d’une singularité,C.R. Acad. Sc. Paris, t. 282 A, p. 959–961. · Zbl 0353.32015
[3] Topological properties ofR 2-actions are studied in:C. Camacho, OnR k {\(\times\)}Z l-actions,Proceed. Symp. on Dynamical Systems, Salvador 1971, Ed. Peixoto, p. 23–70.G. Palis, Linearly induced vector fields andR 2-actions on spheres, to appear inJ. Diff. Geom.C. Camacho, Structural stability theorems for integrable differential forms on 3-manifolds, to appear inTopology.
[4] H. Dulac, Solutions d’un système d’équations différentielles dans le voisinage des valeurs singulières,Bull. Soc. Math. France,40 (1912), 324–383. · JFM 43.0391.01
[5] J. Guckenheimer, Hartman’s theorem for complex flows in the Poincaré domain,Compositio Math.,24 (1972), p. 75–82. · Zbl 0239.58007
[6] A real analogue of theorem III is the classical Grobman-Hartman theorem:P. Hartman,Proc. AMS,11 (1960), p. 610–620.
[7] Topological properties ofreal linear flows onR n are studied in:N. H. Kuiper,Manifolds Tokyo, Proceedings Int. Conference, Math. Soc. Japan (1973), p. 195–204, and:N. N. Ladis,Differentialnye Uravnenya Volg. (1973), p. 1222–1235.
[8] D. Lieberman, Holomorphic vector fields on projective varieties,Proc. Symp. Pure Math., XXX (1976), 273–276.
[9] The invariant of chapter I goes back to an invariant in the study of stability in one parameter families of diffeomorphisms:S. Newhouse, J. Palis, F. Takens, to appear. See also:J. Palis,A differentiable invariant of topological conjugacies and moduli of stability, preprint IMPA.
[10] J. Palis, S. Smale, Structural stability theorems,Global Analysis, Symp. Pure Math., AMS, vol. XIV (1970), p. 223–231. · Zbl 0214.50702
[11] H. Poincaré, Sur les propriétés des fonctions définies par les équations aux différences partielles, thèse, Paris, 1879 =OEuvres complètes, I, p. xcix–cv.
[12] H. Russmann,On the convergence of power series transformations of analytic mappings near a fized point into a normal form, Bures-sur-Yvette, preprint I.H.E.S.
[13] C. L. Siegel, Über die Normalform analytischer Differentialgleichungen in der Nähe einer Gleichgewichtslösung,Göttingen, Nachr. Akad. Wiss., Math. Phys. Kl. (1952), p. 21–30. · Zbl 0047.32901
[14] C. L. Siegel, J. Moser,Celestial mechanics (1971) (English edition of:C. L. Siegel,Vorlesungen über Himmelsmechanik, 1954, Springer Verlag).
[15] Ю. С. Ильященко ЭАМЕЧАНИЯ О ТОПОЛоГИИ ОСОЯЫХ ТОЧЕК АНАЛИТИЧЕСКИХ ДИФФЕРЕНЦИАЛьНЫХ УРАВЕНИЙ В КОМПЛЕКСНОЙ ОьЛАСТИ И ТЕОРЕМА ЛАДИСА,Фенкццональныŭ аналц§rt; ц ео прулоценця, T. 11, ВЫН 2, 1977, 28–38. · Zbl 0308.02032
[16] J. Guckenheimer, On holomorphic vector fields onCP(2),An. Acad. Brasil. Cienc.,42 (1970), p. 415–420.
[17] F. Dumortier, R. Roussarie, Smooth linearization of germs ofR 2-actions and holomorphic vector fields, to appear. · Zbl 0418.58015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.