zbMATH — the first resource for mathematics

High order accurate two-step approximations for hyperbolic equations. (English) Zbl 0411.65057

65N06 Finite difference methods for boundary value problems involving PDEs
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
35L15 Initial value problems for second-order hyperbolic equations
35L20 Initial-boundary value problems for second-order hyperbolic equations
Full Text: DOI EuDML
[1] 1. G. A. BAKER and J. H. BRAMBLE, Semidiscrete and Single Step Fully Discrete Approximations for Second Order Hyperbolic Equations, Rapport Interne No. 22, Centre de Mathématiques appliquées, École polytechnique, Palaiseau, 1977. · Zbl 0405.65057
[2] 2. G. A. BAKER and V. A. DOUGALIS, On the L x -Convergence of Approximations for Hyperbolic Equations (to appear in Math. Comp.). Zbl0454.65078 MR559193 · Zbl 0454.65078
[3] 3. G. A. BAKER, V. A. DOUGALIS and S. M. SERBIN, An Approximation Theorem for Second-Order Evolution Equations (to appear in Numer. Math.). Zbl0445.65075 MR585242 · Zbl 0445.65075
[4] 4. J. H. BRAMBLE, A. H. SCHATZ, V. THOMÉE and L. B. WAHLBIN, Some Convergence Estimates for Semidiscrete Galerkin Type Approximations for Parabolic Equations, S.I.A.M., J. Numer. Anal., Vol. 14, 1977, pp. 218-241. Zbl0364.65084 MR448926 · Zbl 0364.65084
[5] 5. M. CROUZEIX, Sur l’approximation des équations différentielles opérationnelles linéaires par des méthodes de Runge-Kutta, Thèse, Université Paris-VI, 1975.
[6] 6. V. A. DOUGALIS, Multistep Galerkin Methods for Hyperbolic Equations, Math.Comp., Vol. 33, 1979, pp, 563-584. Zbl0417.65057 MR521277 · Zbl 0417.65057
[7] 7. T. DUPONT, L2-Estimates for Galerkin Methods for Second-Order Hyperbolic Equations, S.I.A.M., J. Numer. Anal., Vol. 1973, pp.880-889. Zbl0239.65087 MR349045 · Zbl 0239.65087
[8] 8. E. GEKELER, Linear Multistep Methods and Galerkin Procedures for Initial-Boundary Value Problems, S.I.A.M., J. Numer. Anal., Vol. 13, 1976, pp.536-548. Zbl0335.65042 MR431749 · Zbl 0335.65042
[9] 9. E. GEKELER, Galerkin-Runge-Kutta Methods and Hyperbolic Initial Boundary Value Problems, Computing, Vol. 18, 1977, pp.79-88. Zbl0348.65087 MR438739 · Zbl 0348.65087
[10] 10. S. M. SERBIN, Rational Approximations of Trigonométric Matrices with Applications to Second-Order Systems of Differential Equations, Appl. Math, and Computation, Vol. 5, 1979, pp. 75-92. Zbl0408.65047 MR516304 · Zbl 0408.65047
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.