Subgroups of SL(2,R) freely generated by three parabolic elements. (English) Zbl 0412.20033


20G20 Linear algebraic groups over the reals, the complexes, the quaternions
20E05 Free nonabelian groups
20E07 Subgroup theorems; subgroup growth
20F05 Generators, relations, and presentations of groups
20H05 Unimodular groups, congruence subgroups (group-theoretic aspects)
Full Text: DOI


[1] Bachmuth S., Proc. Am. Math. Soc 59 pp 25– (1976)
[2] Birman J., Princeton Univ. Press 82 (1975)
[3] Brenner J. L., C. R. Acad. Sci. Paris 24 pp 1689– (1955)
[4] Chang B., Can. J. Math. 10 pp 279– (1958) · Zbl 0081.25902
[5] Lyndon R. C., Can. J. Math. 21 pp 1388– (1969) · Zbl 0191.01904
[6] Lyndon R. C., Mich. Math. Jour. 15 pp 161– (1968) · Zbl 0159.30602
[7] Magnus W., Combinatorial Group Theory (1976)
[8] Merzljakov J., Dokl. Akad. Nauk. SSSR 238 (3) pp 527– (1978)
[9] Newmann M., Mich. Math. Jour. 15 (3) pp 155– (1968)
[10] Sanov L. N., Geometric topology lecture notes (1978)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.