×

zbMATH — the first resource for mathematics

Algebraische Beschreibung der Ableitung bei q-mal stetig- differenzierbaren Funktionen. (German) Zbl 0412.32028

MSC:
32K15 Differentiable functions on analytic spaces, differentiable spaces
26B05 Continuity and differentiation questions
PDF BibTeX XML Cite
Full Text: Numdam EuDML
References:
[1] C. Chevalley : Theory of Lie Groups I . Princeton 1946. · Zbl 0063.00842
[2] H. Flanders : Development of an extended exterior differential calculus . Trans. AMS 75 (1953) 311-326. · Zbl 0052.17901 · doi:10.2307/1990735
[3] W.F. Newns and A.G. Walker : Tangent Planes to a Differentiable Manifold J. London Math. Soc. 31 (1956), 400-407. · Zbl 0071.15303 · doi:10.1112/jlms/s1-31.4.400
[4] K. Reichard : Nichtdifferenzierbare Morphismen differenzierbarer Räume . Man. Math. 15, (1975) 243-250. · Zbl 0305.58003 · doi:10.1007/BF01168676 · eudml:154318
[5] K. Spallek : Abgeschlossene Garben differenzierbarer Funktionen . Man. Math. 6, (1972) 147-175. · Zbl 0227.58002 · doi:10.1007/BF01369711 · eudml:154090
[6] K. Spallek : Beispiele zur lokalen Theorie der differenzierbaren Räume . Math. Ann. 195, (1972) 332-347. · Zbl 0217.49501 · doi:10.1007/BF01423620 · eudml:162237
[7] J.-C. Tougeron : Idéaux de fonctions différentiables . Ergeb. d. Math. Bd. 71, Springer-Verlag (1972). · Zbl 0251.58001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.