Van Dulst, D. Reflexive and superreflexive Banach spaces. (English) Zbl 0412.46006 Mathematical Centre Tracts. 102. Amsterdam: Mathematisch Centrum. V, 273 p. (1978). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 28 Documents MSC: 46B10 Duality and reflexivity in normed linear and Banach spaces 46-02 Research exposition (monographs, survey articles) pertaining to functional analysis 46A50 Compactness in topological linear spaces; angelic spaces, etc. 46B15 Summability and bases; functional analytic aspects of frames in Banach and Hilbert spaces 46B20 Geometry and structure of normed linear spaces 46B25 Classical Banach spaces in the general theory Keywords:superreflexive Banach spaces; bipolar theorem; Alaoglu theorem; extreme points; reflexivity; compactness; Eberlein-Šmulian theorem; subreflexivity; quasireflexivity; somewhat reflexivity; Lindenstrauss-Rosenthal principle; local reflexivity; bases; renorming; James properties; rotundity; James reflexivity theorem; infinite tree property; uniformly convex spaces; uniformly smooth spaces; renorming Asplund theorem; uniform convexifiability; girth; flat Banach space × Cite Format Result Cite Review PDF