×

zbMATH — the first resource for mathematics

On the two-scales method for a class of integro-differential equations appearing in viscoelasticity. (English) Zbl 0412.73002

MSC:
74A20 Theory of constitutive functions in solid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Graffi, D., Atti sem. mat. fis. univ. modena, 20, 23, (1971)
[2] Duvaut, G.; Lions, J.L., LES inéquations en Mécanique et en physique, (1972), Dunod Paris · Zbl 0298.73001
[3] Mitropolski, I., Non linear mechanics C.I.M.E crémonèse, (1973), Rome
[4] Turbe, N., Justification de la méthode des échelles multiples pour un type d’équations intégro-différentielles, C.R. acad. sci., (1977), Paris · Zbl 0356.73038
[5] Turbe, N., Justification de la méthode des échelles multiples pour un type d’équations intégro-différentielles, (), 287 · Zbl 0436.73046
[6] Dafermos, C.M., An abstract Volterra equation with applications to linear viscoelasticity, J. diff. eqn, 7, 554, (1970) · Zbl 0212.45302
[7] Dafermos, C.M., A.r.m.a., 37, 297, (1970)
[8] Sanchez-Palencia, E., Justification de la méthode des échelles multiples pour une classe d’équations aux dérivées partielles, Annal. mat. pura appl., (1978) · Zbl 0405.35007
[9] Eckhaus, W., SIAM review, 19, 593, (1977)
[10] Mandel, J., Cours de Mécanique des milieux continus, (1966), Gauthier-Villars Paris · Zbl 0148.20305
[11] Londen, S.O., Mich. math. J., 18, 321, (1971)
[12] Roseau, M., Equations différentielles, (1976), Masson Paris · Zbl 0318.34001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.