Semi-topological functors. II: external characterizations. (English) Zbl 0413.18002


18A40 Adjoint functors (universal constructions, reflective subcategories, Kan extensions, etc.)
18A32 Factorization systems, substructures, quotient structures, congruences, amalgams
18A35 Categories admitting limits (complete categories), functors preserving limits, completions
18D05 Double categories, \(2\)-categories, bicategories and generalizations (MSC2010)
18A22 Special properties of functors (faithful, full, etc.)
54B30 Categorical methods in general topology
Full Text: DOI


[1] Brümmer, G.C.L.; Hoffmann, R.-E., An external characterization of topological functors, (), 136-151
[2] Brümmer, G.C.L.; Hoffmann, R.-E., On a local initial completion and some problems about topologicity of functors, Tagungsbericht “kategorian”, (1977), Oberwolfach
[3] Guitart, R., Remarques sur LES machines et LES structures, Cahiers topo. Géo. diff., 15, 113-145, (1974) · Zbl 0319.18003
[4] Guitart, R.; Van den Bril, L., Décompositions et Lax complétions, Cahiers topo. Géo. diff., 18, 383, (1977) · Zbl 0381.18012
[5] Hušek, M., Construction of special functors and its applications, Comment. math. univ. carolinae, 8, 555-566, (1967) · Zbl 0172.47601
[6] Porst, H.-E., Characterization of mac neille completions and topological functors, Bull. austral. math. soc., 18, 201-210, (1978) · Zbl 0379.18004
[7] Rosický, J., Extensions of functors and their applications, Cahiers topo. Géo. diff., 19, 178-220, (1978) · Zbl 0393.18002
[8] Tholen, W., Semi-topological functors I, J. pure appl. algebra, 15, 53-73, (1979) · Zbl 0413.18001
[9] M.B. Wischenewsky, A generalized duality theorem for structure functors, Cahiers Topo. Géo. Diff. (to appear).
[10] Wolff, H., On the external characterization of topological functors, Manuscripta math., 22, 63-76, (1977) · Zbl 0365.18012
[11] H. Wolff, Handwritten notes(1977).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.