Kato’s inequality and the comparison of semigroups. (English) Zbl 0413.47037


47B60 Linear operators on ordered spaces
47D03 Groups and semigroups of linear operators
Full Text: DOI


[1] Avron, J.; Herbst, I.; Simon, B., Schrödinger operators with magnetic fields. I. general theory, Duke math. J., 45, 847-883, (1978) · Zbl 0399.35029
[2] Beurling, A.; Deny, J., Espaces de Dirichlet, Acta math., 99, 203-224, (1958) · Zbl 0089.08106
[3] Combes, J.; Schrader, R.; Seiler, R., Classical bounds and limits for energy distributions of Hamiltonian operators in electromagnetic fields, Ann. phys. (New York), 111, 1-18, (1978), preprint
[4] Davies, E.B., Properties of Green’s function of some Schrödinger operators, J. London math. soc., 7, 473-491, (1973) · Zbl 0271.47003
[5] Ikebe, T.; Kato, T., Uniqueness of the self-adjoint extension of singular elliptic differential operators, Arch. rational mech. anal., 9, 77-92, (1962) · Zbl 0103.31801
[6] Kato, T., Schrödinger operators with singular potential, Israel J. math., 13, 135-148, (1972)
[7] Reed, M.; Simon, B., Methods of modern mathematical physics. IV. analysis of operators, (1978), Academic Press New York · Zbl 0401.47001
[8] Schechter, M., Spectra of partial differential operators, (1971), North-Holland Amsterdam · Zbl 0225.35001
[9] Simon, B., Schrödinger operators with singular magnetic vector potential, Math. Z., 131, 361-370, (1973) · Zbl 0277.47006
[10] Simon, B., Universal diamagnetism of spinless Bose systems, Phys. rev. lett., 36, 1083-1084, (1976)
[11] Simon, B., Abstract Kato’s inequality for generators of positivity preserving semigroups, Indiana univ. math. J., 26, 1067-1073, (1977) · Zbl 0389.47021
[12] Simon, B., Functional integration and quantum physics, (1979), Academic Press New York · Zbl 0434.28013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.