Adaptive procedure for estimating parameters for the nonsymmetric Tchebychev iteration. (English) Zbl 0413.65032


65F15 Numerical computation of eigenvalues and eigenvectors of matrices
65F10 Iterative numerical methods for linear systems


Zbl 0372.65015
Full Text: DOI EuDML


[1] Birkhoff, G., Maclane, S.: A survey of modern algebra. New York: MacMillan 1953 · Zbl 0052.25402
[2] Carre’, B.A.: The determination of the optimum acceleration factor for successive overrelaxation. Comput. J.4, 73-78 (1961) · Zbl 0098.31405
[3] Concus, P., Golub, G.H.: A generalized conjugate gradient method for non-symmetric systems of linear equations. Proc. Second International Symposium on Computing Methods in Applied Sciences and Engineering. Versailles, France, December 1975 · Zbl 0344.65020
[4] Diamond, M.A.: An economical algorithm for the solution of elliptic difference equations independent of user-supplied parameters. Ph.D. Dissertation, Department of Computer Science, University of Ill., 1972
[5] Dunford, N., Schwartz, J.L.: Linear operators. New York: Interscience 1958 · Zbl 0084.10402
[6] Engeli, M., Ginsburg, T.H., Rutishauser, H., Stiefel, E.L.: Refined iterative methods for computation of the solution and eigenvalues of self-adjoint boundary value problems. Mitteilungen aus dem Institut für Angewandte Mathematik, No.8, pp. 1-78, 1959 · Zbl 0089.12103
[7] Faddeev, D.K., Faddeeva, U.N.: Computational methods of linear algebra. San Francisco: Freeman 1963 · Zbl 0112.07503
[8] Golub, G.H., Varga, R.S.: Chebyshev semi-iterative methods, successive over relaxation iterative methods and second order Richardson iterative methods. Numer. Math.3, 147 (1961) · Zbl 0099.10903
[9] Golub, G., Kahan, W.: Calculating the singular values and pseudo-inverse of a matrix. SIAM J. Numer. Anal.2, 205-224 (1965) · Zbl 0194.18201
[10] Hageman, L.A., Kellogg, R.B.: Estimating optimum overrelaxation parameters. Math Comput.22, 60-68 (1968) · Zbl 0165.50301
[11] Hageman, L.A.: The estimation of acceleration parameters for the Chebyshev polynomial and the successive over relaxation iteration methods. AEC Research and Development Report WAPD-TM-1038, June 1972
[12] Henrici, P.: Bounds for iterates, inverses, spectral varation and fields of values of non-normal matricies. Numer. Math.4, 24-40 (1962) · Zbl 0102.01502
[13] Hestenes, M.R., Stiefel, E.L.: Methods of conjugate gradients for solving linear systems. N.B.S.J. Res.49, 409-436 (1952) · Zbl 0048.09901
[14] Householder, A.S.: The theory of Matricies in numerical analysis, pp. 37-57. New York: Blaisdell 1964
[15] Kershaw, D.S.: The incomplete Cholesky-conjugate gradient method for the iterative solution of systems of linear equations. Lawrence Livermore Lab Report, UCRL-78333, Livermore, California, 1976 · Zbl 0367.65018
[16] Kincaid, D.R.: On complex second-degree iterative methods. SIAM J. Numer. Anal.II, No. 2, 211-218 (1974) · Zbl 0289.65016
[17] Kincaid, D.R.: Numerical results of the application of complex second-degree and semi-iterative methods. Center for Numerical Analysis Report, CNA-90, Oct. 1974
[18] Kjellberg, G.: On the convergence of successive over relaxation applied to a class of linear systems of equations with complex eigenvalues. Ericsson Technics2, 245-258 (1958)
[19] Manteuffel, T.A.: An iterative method for solving nonsymmetric linear systems with dynamic estimation of parameters. Digital Computer Laboratory Reports, Rep. UIUCDS-R-75-758, University of Ill., Oct. 1975
[20] Manteuffel, T.A.: The Tchebychev iteration for nonsymmetric linear systems. Numer. Math.28, 307-327 (1977) · Zbl 0361.65024
[21] Meijerink, J.A., van der Vorst, H.A.: An iterative solution method for linear systems of which the coefficient matrix is a symmetricM-matrix. Math. Comput.31, 148-162 (1977) · Zbl 0349.65020
[22] Paige, C.C.: Bidiagonalization of matrices and solution of linear equations. SIAM J. Numer. Anal.11, 197 (1974) · Zbl 0273.65024
[23] Reid, J.K.: A method for finding the optimum successive overrelaxation parameter. Comput. J.9, 200-204 (1966) · Zbl 0202.43404
[24] Stewart, G.W.: Introduction to matrix computation. New York: Academic Press 1973 · Zbl 0302.65021
[25] Stiefel, E.L.: Kernel polynomials in linear algebra and their applications. U.S. N.B.S. Applied Math Series49, 1-22 (1958) · Zbl 0171.35703
[26] Stone H.L.: Iterative solutions of implicit approximations of multidimensional partial differential equations. SIAM J. Numer. Anal.5, 530 (1968) · Zbl 0197.13304
[27] Taussky, O.: Some topics concerning bounds for eigenvalues of finite matrices. In: Survey of numerical analysis (J. Todd, ed.), Ch. 8, pp. 279-297. New York: McGraw Hill 1962
[28] Varga, R.S.: A comparison of successive over relaxation and semi-iterative methods using Chebyshev polynomials. SIAM J. Numer. Anal.5, 39-46 (1957) · Zbl 0080.10701
[29] Varga, R.S.: Matrix iterative analysis. Englewood Cliffs, N.J.: Prentice-Hall 1962 · Zbl 0133.08602
[30] Wachspress, E.L.: Iterative solution of elliptic systems, pp. 157-158. Englewood Cliffs, N.J.: Prentice-Hall 1962
[31] Widland, O.: A Lanczos method for a class of non-hermitian systems of linear equations. Tech. Rep., Courant Institute, New York (to appear)
[32] Wilkinson, J.H.: The algebraic eigenvalue problem. Oxford: Clarendon Press 1965 · Zbl 0258.65037
[33] Wrigley, H.E.: Accelerating the Jacobi method for solving simultaneous equations by Chebyshev extrapolation when the eigenvalues of the iteration matrix are complex.6, 169-176 (1963) · Zbl 0131.14201
[34] Young, D.M., Edison, H.D.: On the determination of the optimum relaxation factor for the SOR method when the eigenvalues of the Jacobi method are complex. Center for Numerical Analysis Report, CNA-1, September 1970
[35] Young, D.: Iterative solution of large linear systems, pp. 191-200. New York-London: Academic Press 1971
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.