On the symmetric travelling salesman problem II: lifting theorems and facets. (English) Zbl 0413.90049


90C10 Integer programming
52Bxx Polytopes and polyhedra
52A40 Inequalities and extremum problems involving convexity in convex geometry
Full Text: DOI


[1] V. Chvátal, ”Edmonds polytopes and weakly Hamiltonian graphs”,Mathematical Programming 5 (1973) 29–40. · Zbl 0267.05118
[2] M. Grötschel, ”Polyedrische Charakterisierungen kombinatorischer Optimierungsprobleme”, Dissertation, University of Bonn, 1977 (Verlag A. Hain, Meisenheim, 1977). · Zbl 0392.90045
[3] M. Grötschel and M.W. Padberg, ”On the symmetric travelling salesman problem I: Inequalities”,Mathematical Programming (1979) 265–280 (this issue). · Zbl 0413.90048
[4] J.F. Maurras, ”Polytopes à sommets dans [0, 1] n ”, Thèse, University of Paris (Paris, 1976).
[5] M.W. Padberg and S. Hong, ”On the symmetric travelling salesman problem: A computational study”, T.J. Watson Research Center, IBM Research (Yorktown Heights, NY, 1977). · Zbl 0388.90054
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.