zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Nonlinear age-dependent population growth with history-dependent birth rate. (English) Zbl 0413.92012

92D25Population dynamics (general)
35F15Boundary value problems for first order linear PDE
Full Text: DOI
[1] Auslander, D. G.; Oster, G.; Huffaker, C.: Dynamics of interacting populations. J. franklin inst. 297, 345-376 (1974)
[2] Di Blasio, G.; Lamberti, L.: An initial-boundary value problem for age-dependent population diffusion. SIAM J. Appl. math. 35, 593-615 (1978) · Zbl 0394.92019
[3] Gurtin, M. E.; Maccamy, R. C.: Nonlinear age-dependent population dynamics. Arch. rational mech. Anal. 54, 281-300 (1974) · Zbl 0286.92005
[4] Hoppensteadt, F.: Mathematical theories of population. Demographics, genetics and epidemics. CBMS-NSF regional conferences series, society for industrial and applied mathematics (1975) · Zbl 0304.92012
[5] Langhaar, H. L.: General population theory in the age-time continuum. J. franklin inst. 293, 199-214 (1972) · Zbl 0268.92011
[6] Lotka, A. J.: Elements of physical biology. (1925) · Zbl 51.0416.06
[7] Von Foerster, H.: Some remarks on changing populations. The kinetics of cellular proliferation, 382-407 (1959)