zbMATH — the first resource for mathematics

On von Neumann regular rings. III. (English) Zbl 0414.16006

16E50 von Neumann regular rings and generalizations (associative algebraic aspects)
16D70 Structure and classification for modules, bimodules and ideals (except as in 16Gxx), direct sum decomposition and cancellation in associative algebras)
16Dxx Modules, bimodules and ideals in associative algebras
16P60 Chain conditions on annihilators and summands: Goldie-type conditions
16D40 Free, projective, and flat modules and ideals in associative algebras
16D50 Injective modules, self-injective associative rings
Full Text: DOI EuDML
[1] Ahsan, J.: Rings all of whose cyclic modules are quasi-injective. Proc. London Math. Soc.27, 425–439 (1973). · Zbl 0267.16012 · doi:10.1112/plms/s3-27.3.425
[2] Bass, H.: Finitistic dimension and a homological generalisation of semi-primary rings. Trans. Amer. Math. Soc.95, 466–488 (1960). · Zbl 0094.02201 · doi:10.1090/S0002-9947-1960-0157984-8
[3] Chase, S.: Direct product of modules. Trans. Amer. Math. Soc.97, 457–473 (1960). · Zbl 0100.26602 · doi:10.1090/S0002-9947-1960-0120260-3
[4] Ikeda, M., andT. Nakayama: On some characteristic properties of quasi-Frobenius and regular rings. Proc. Amer. Math. Soc.5, 15–19 (1954). · Zbl 0055.02602 · doi:10.1090/S0002-9939-1954-0060489-9
[5] Jain, S. K., S. H. Mohamed andS. Singh: Rings in which every right ideal is quasi-injective. Pac. J. Math.31, 73–79 (1969). · Zbl 0213.04401
[6] Utumi, Y.: On continuous regular rings and semi-simple, self-injective rings. Canad. J. Math.12, 597–605 (1960). · Zbl 0100.26303 · doi:10.4153/CJM-1960-053-9
[7] Utumi, Y.: On continuous rings and self-injective rings. Trans. Amer. Math. Soc.118, 158–173 (1965). · Zbl 0144.27301 · doi:10.1090/S0002-9947-1965-0174592-8
[8] Yue Chi Ming, R.: On von Neumann regular rings. Proc. Edinburgh Math. Soc.19, 89–91 (1974). · Zbl 0268.16007 · doi:10.1017/S0013091500015418
[9] Yue Chi Ming, R.: On von Neumann regular rings, II. Math. Scand.39, 167–170 (1976). · Zbl 0344.16011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.