zbMATH — the first resource for mathematics

Classification of soluble groups of cohomological dimension two. (English) Zbl 0414.20032

20F16 Solvable groups, supersolvable groups
20J05 Homological methods in group theory
20F05 Generators, relations, and presentations of groups
20E34 General structure theorems for groups
20E07 Subgroup theorems; subgroup growth
18G20 Homological dimension (category-theoretic aspects)
PDF BibTeX Cite
Full Text: DOI EuDML
[1] Baer, R., Heineken, H.: Radical groups of finite abelian subgroup rank. Illinois J. Math.16, 533-580 (1972) · Zbl 0248.20052
[2] Baumslag, G., Strebel, R.: Some finitely generated, infinitely related metabelian groups with trivial multiplicator. J. Algebra40, 46-62 (1976) · Zbl 0353.20037
[3] Bieri, R.: Homological Dimension of Discrete Groups. Queen Mary College Mathematics Notes. London El: Queen Mary College (University of London) 1976 · Zbl 0357.20027
[4] Bieri, R.: Über die cohomologische Dimension der Auflösbaren Gruppen. Math. Z.128, 235-243 (1972) · Zbl 0237.20027
[5] Bieri, R., Strebel, R.: Almost finitely presented soluble groups. Comment. Math. Helv.53, 258-278 (1978) · Zbl 0373.20035
[6] ?arin, V.S.: On soluble groups of typeA 4. Mat. Sb.52, (94), 895-914 (1960)
[7] Connell, I.: On the group ring. Canad. J. Math.15, 650-685 (1963) · Zbl 0121.03502
[8] Fel’dman, G.: On the homological dimension of group algebras of solvable groups (Russian). Izv. Akad. Nauk SSSR Ser. Mat.35, 1225-1236 (1971). Translated in: Math. USSR-Izv. 5, 2, 1231-1244 (1971) · Zbl 0234.18008
[9] Gruenberg, K.: Cohomological Topics in Group Theory. Lecture Notes in Mathematics143. Berlin-Heidelberg-New York: Springer 1970 · Zbl 0205.32701
[10] Plotkin, B.Z.: Radical Groups. Amer. Math. Soc. Transl. (2)17, 9-28 (1961) · Zbl 0128.25402
[11] Serre, J.-P.: Cohomologie des Groupes Discrets. In: Hirzebruch, F. et al.: Prospects in Mathematics. Annals of Mathematics Studies70, pp. 77-169. Princeton, N.J.: Princeton University Press 1971
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.