zbMATH — the first resource for mathematics

A note on right-equivalence of map-germs. (English) Zbl 0414.58007
58C25 Differentiable maps on manifolds
58K99 Theory of singularities and catastrophe theory
57R45 Singularities of differentiable mappings in differential topology
Zbl 0404.58011
Full Text: DOI EuDML
[1] Bröcker, Th., Lander, L.: Differentiable Germs and Catastrophes. Cambridge: Cambridge University Press. 1975 · Zbl 0302.58006
[2] Magnus, R.: On the Orbits of a Lie Group Action. Math. Report No. 105. Genf: Battelle 1976
[3] Poston, T., Stewart, I.: Catastrophe Theory and its Applications. London-San Francisco-Melbourne: Pitman 1978 · Zbl 0382.58006
[4] Thom, R.: Structural Stability and Morphogenesis. Reading, Massachusetts: Benjamin 1975 · Zbl 0303.92002
[5] Tougeron, J.C.: Idéaux de fonctions différentiables I. Ann. Inst. Fourier (Grenoble)18, 177-240 (1968) · Zbl 0188.45102
[6] Tougeron, J.C.: Idéaux de fonctions différentiables. Berlin-Heidelberg-New York: Springer 1972
[7] Wassermann, G.: Stability of Unfoldings. Springer Lecture Notes in Mathematics393. Berlin-Heidelberg-New York: Springer 1974
[8] Wassermann, G.: Stability of Unfoldings in Space and Time. Acta Math.135, 57-128 (1975) · Zbl 0315.58010
[9] Zeeman, C., Trotman, D.: The Classification of Elementary Catastrophes of Codimension ?5. In: Structural Stability, the Theory of Catastrophes, and Applications in the Sciences. Springer Lecture Notes in Mathematics525. Berlin-Heidelberg-New York: Springer 1976 · Zbl 0342.58012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.