zbMATH — the first resource for mathematics

Sur la convergence théorique de la méthode du gradient reduit généralise. (French) Zbl 0414.65037

65K05 Numerical mathematical programming methods
90C30 Nonlinear programming
Full Text: DOI EuDML
[1] Abadie, J., Carpentier, J.: Generalization of the Wolfe reduced gradient method to the case of nonlinear constraintes. In: Optimization (R. Fletcher, ed.) London: Academic 1969 · Zbl 0254.90049
[2] Abadie, J., Guigou, J.: M?thode du gradient r?duit g?n?ralis?: Publication de l’Electricit? de France (EDF); Avril 1969
[3] Faure, P., Huard, P.: R?solution de programmes math?matiques ? fonction nonlin?aire par la m?thode du Gradient R?duit; Rev. Fran?aise Recherche Op?rationnelle36, 167-206 (1965)
[4] Huard, P.: Convergence of the reduced gradient method. In: Nonlinear programming symposium at Madison 1974; O.L. Mangasarian; R.R. Meyer; S.M. Robinson. (eds.) p. 29-54. New York-London: Academic 1975
[5] Luenberger, D.G.: Introduction to linear and nonlinear programming. New York-London: Academic 1973 · Zbl 0297.90044
[6] Mokhtar-Kharroubi, H.: Th?se 3?me cycle; Paris VI; Juin 1976. Chapitre V: M?thodes de gradient r?duit
[7] Mokhtar-Kharroubi, H.: Sur quelques m?thodes de gradient r?duit sous contraintes lin?aires; RAIRO-Analyse numerique V 13, N2, 167-180 (1979) · Zbl 0409.90075
[8] Smeers, Y.: Generalized reduced gradient method as an extension of feasible direction methods; J. Optimization Theory Appl.22, 209-226 (1977) · Zbl 0336.65035 · doi:10.1007/BF00933163
[9] Wolfe, P.: Reduced gradient method; RAND Document Juin 1962
[10] Wolfe, P.: On the convergence of gradient method under constraintes; IBM Journal. 407-411 (1972) · Zbl 0265.90046
[11] Zangwill, W.: The convex-simplex method; Management Sci.14, 221-238 (1967) · Zbl 0153.49002 · doi:10.1287/mnsc.14.3.221
[12] Zangwill, W.: Nonlinear programming; A unified approach. Englewood Cliffs, New Jersey: Prentice-Hall 1969 · Zbl 0195.20804
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.