zbMATH — the first resource for mathematics

Convergence of two-dimensional Nyström discrete-ordinates, in solving the linear transport equation. (English) Zbl 0414.65074

65R20 Numerical methods for integral equations
45K05 Integro-partial differential equations
82C70 Transport processes in time-dependent statistical mechanics
Full Text: DOI EuDML
[1] Abu-Shumays, I.K.: Compatible product angular quadrature for neutron transport inx?y geometry. Nucl. Sci. Eng.64, 299-316 (1977).
[2] Anselone, P.M.: Convergence of Chandrasekhar’s method for inhomogeneous transfer problems. J. Math. Mech.10, 537-546 (1961) · Zbl 0121.23203
[3] Anselone, P.M.: Collectively compact operator approximation theory. Englewood Cliffs, N.J.: Prentice-Hall 1971 · Zbl 0228.47001
[4] Anselone, P.M., Gibbs, A.G.: Convergence of the discrete ordinates method for the transport equation. In: Constructive and computational methods for differential and integral equations, D.L. Colton, R.P. Gilbert, eds. Lecture Notes in Mathematics, Vol. 430, pp. 1-27, Berlin Heidelberg New York: Springer 1974 · Zbl 0297.45010
[5] Chuyanov, V. A.: On the convergence of the approximate solution of the kinetic equation (by a quadrature method of Gaussian type. In: Some mathematical problems of neutron physics, pp. 199-200. Moscow: Izd-vo, MGU 1960
[6] Dieudonne, J.: Foundations of modern analysis, 1st ed. New York: Academic Press 1960
[7] Dugundji, J.: Topology, 1st ed. Boston: Allyn and Bacon, 1966
[8] Keller, H.B.: Approximate solutions of transport problems II. Convergence and applications of the discrete ordinate method. J. Soc. Indus. Appl. Math.8, 43-73 (1960) · Zbl 0116.33301 · doi:10.1137/0108005
[9] Keller, H.B.: On the pointwise convergence of the discrete ordinate method.ibid.8, 560-567 (1960) · doi:10.1137/0108042
[10] Keller, H.B.: Convergence of the discrete ordinate method for the anisotropic-scattering transport equation. In: Symposium, Provisional International Computation Centre. Basel: Birkhauser 1960 · Zbl 0141.13605
[11] Kraft, Richard: Convergence of semidiscrete approximations of linear transport equations. J. Math. Anal. Appl.37, 412-431 (1972) · Zbl 0229.35002 · doi:10.1016/0022-247X(72)90283-1
[12] Lathrop, K.D. Remedies for ray effects, Nucl. Sci. Eng.45, 255-268 (1971), esp. pp. 259-260
[13] Lathrop, K.D.: Discrete-ordinates methods for the numerical solution of the transport equation. Reactor Technology15, 107-35 (1972)
[14] Lathrop, K.D., Brinkley, F.W.: TWOTRAN II: An interfaced, exportable version of the TWOTRAN code for two-dimensional transport. Los Alamos Scientific Laboratory: LA-4848-MS (1975)
[15] Lathrop, K.D., Carlson, B.G.: Discrete ordinates angular quadrature of the neutron transport equation. Los Alamos Scientific Laboratory: LA-3186 (1965)
[16] Lathrop, K.D., Carlson, B.G.: Properties of new numerical approximations to the transport equation. J. Quant. Spectrosc. Radiat. Transfer11, 921-48 (1971) · doi:10.1016/0022-4073(71)90065-3
[17] Madsen, N.K.: Pointwise convergence of the three-dimensional discrete-ordinates method. SIAM J. Numer. Anal.8, 266-269 (1971) · Zbl 0225.65093 · doi:10.1137/0708027
[18] Miller, W.F., Jr., Dudziak, D., O’Dell, R.P., Gomez, M.F.: Transport and reactor theory. Los Alamos Scientific Laboratory: LA-7271-PR (Progress Report), January 1?March 31, 1978
[19] Miller, W.F. Jr., Reed, W.H.: Ray-effect mitigation methods for two-dimensional neutron transport theory. Nucl. Sci. Eng.62, 391-411 (1977)
[20] Natanson, I.P.: Constructive function theory, 1st ed. New York: Frederick Ungar 1965 · Zbl 0178.39701
[21] Nelson, P., Jr.: Subcriticality for transport of multiplying particles in a slab. J. Math. Anal. Appl.35, 90-104 (1971) · Zbl 0214.37105 · doi:10.1016/0022-247X(71)90238-1
[22] Nelson, P., Jr.: Convergence of the discrete-ordinates method for anisotropically scattering multiplying particles in a subcritical slab. SIAM J. Numer. Anal.10, 175-181 (1973) · Zbl 0257.35004 · doi:10.1137/0710018
[23] Nelson, P., Jr., Victory, H.D., Jr.: Theoretical properties of one-dimensional discrete-ordinates. SIAM J. Numer. Anal.16, 270-283 (1979) · Zbl 0415.65066 · doi:10.1137/0716020
[24] Nestell, M.K.: The convergence of the discrete-ordinates method for integral equations of anisotropic radiative transfer. Techn. Rep. 23. Department of Mathematics, Oregon State University, Corvallis, 1965
[25] Rockafellar, R.T.: Convex analysis, 1st ed. Princeton University Press 1970 · Zbl 0193.18401
[26] Rudin, W.: Real and complex analysis, 1st ed. New York: McGraw Hill 1968 · Zbl 0142.01701
[27] Stroud, A.H.: Approximate calculation of multiple integrals. Englewood Cliffs, N.J.: Prentice Hall 1971 · Zbl 0379.65013
[28] Wendroff, B.: On the convergence of the discrete-ordinates method. J. Soc. Indus. Appl. Math.8, 508-513 (1960) · Zbl 0136.13303 · doi:10.1137/0108034
[29] Wilson, D.G.: The time dependent linear transport equation in a multi-dimensional parallepiped with partially reflecting walls. Doctoral Thesis: University of Maryland, University Park, Md. 1971
[30] Wilson, D.G.: An alternating direction implicit scheme for discrete-ordinate transport equations. J. Math. Anal. Appl.48, 95-113 (1974) · Zbl 0307.45012 · doi:10.1016/0022-247X(74)90218-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.