×

zbMATH — the first resource for mathematics

A theorem on normal flatness. (English) Zbl 0415.13013
MSC:
13H99 Local rings and semilocal rings
13A15 Ideals and multiplicative ideal theory in commutative rings
14E15 Global theory and resolution of singularities (algebro-geometric aspects)
14H20 Singularities of curves, local rings
PDF BibTeX XML Cite
Full Text: Numdam EuDML
References:
[1] Achilles , Schenzel , Vogel : Bemerkungen über normale Flachheit und normale Torsionsfreiheit und Anwendungen . (Preprint). · Zbl 0431.13007 · doi:10.1007/BF01848171
[2] Herrmann , Schmidt : Zur Transitivität der normalen Flachheit . Invent. Math. 28 (1975). · Zbl 0278.14008 · doi:10.1007/BF01389907 · eudml:142317
[3] Herrmann , Schmidt , Vogel : Theorie der normalen Flachheit . Teuber-Texte zur Math. (1977). · Zbl 0356.13008
[4] Hironaka : Resolution of singularities of an algebraic variety over a field of characteristic zero . Ann. of Math. 79 (1964). · Zbl 0122.38603 · doi:10.2307/1970486
[5] Grothendieck : Éléments de géométrie algébrique I.H.E.S. Publ. Math. Paris 32 (1967). | · Zbl 0153.22301 · www.numdam.org
[6] Robbiano : An algebraic property of P1 \times Pr . (In preparation).
[7] Robbiano , Valla : Primary powers of a prime ideal . Pacific J. Math. 63 (1976). · Zbl 0308.13003 · doi:10.2140/pjm.1976.63.491
[8] Robbiano , Valla : On normal flatness and normal torsionfreeness . J. of Algebra 43 (1976). · Zbl 0349.13004 · doi:10.1016/0021-8693(76)90126-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.