×

zbMATH — the first resource for mathematics

On finite complete groups. (English) Zbl 0415.20013

MSC:
20D45 Automorphisms of abstract finite groups
20D25 Special subgroups (Frattini, Fitting, etc.)
20D20 Sylow subgroups, Sylow properties, \(\pi\)-groups, \(\pi\)-structure
20F40 Associated Lie structures for groups
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] R. M. Bryant andL. G. Kovács, Lie representations and groups of prime power order. J. London Math. Soc. (2)17, 415?421 (1978). · Zbl 0384.20017
[2] R. S. Dark, A complete group of odd order. Math. Proc. Cambridge Philos. Soc.77, 21?28 (1975). · Zbl 0303.20018
[3] T. M.Gagen, Some finite solvable groups with no outer automorphisms. J. Algebra (to appear). · Zbl 0436.20014
[4] T. M.Gagen, Carter subgroups of classical groups (to appear). · Zbl 0183.03102
[5] T. M. Gagen andD. J. S. Robinson, Finite metabelian groups with no outer automorphisms. Arch. Math.32, 417?423 (1979). · Zbl 0401.20011
[6] W. Gaschütz, Kohomologische Trivialität und äußerep-Automorphismen. J. Algebra4, 1?2 (1966). · Zbl 0142.26001
[7] K. Hoechsmann, P. Roquette andH. Zassenhaus, A cohomological characterization of finite nilpotent groups. Arch. Math.19, 225?244 (1968). · Zbl 0157.05603
[8] O. Hölder, Bildung zusammengesetzter Gruppen. Math. Ann.46, 321?422 (1895). · JFM 26.0160.01
[9] M. V. Horo?evskii, On complete groups of odd order. Algebra i Logika13, 63?76 (1974) (Russian) = Algebra and Logic13, 34?40 (1974).
[10] B.Huppert, Endliche Gruppen I. Berlin-Heidelberg-New York 1967. · Zbl 0217.07201
[11] D. J. S.Robinson, Infinite soluble groups with no outer automorphisms. Rend. Sem. Mat. Univ. Padova (to appear). · Zbl 0436.20024
[12] P. Schmidt, Normalp-subgroups in the group of outer automorphisms of a finitep-group. Math. Z.147, 271?277 (1976). · Zbl 0315.20020
[13] W. R.Scott, Group Theory. Englewood Cliffs 1964.
[14] C. Wells, Automorphisms of group extensions. Trans. Amer. Math. Soc.155, 189?193 (1971). · Zbl 0221.20054
[15] H. Wielandt, Eine Verallgemeinerung der invarianten Untergruppen. Math. Z.45, 209?244 (1939). · Zbl 0021.21003
[16] W. J. Wong, A cohomological characterization of finite nilpotent groups. Proc. Amer. Math. Soc.19, 689?691 (1968). · Zbl 0157.05602
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.