×

zbMATH — the first resource for mathematics

Homogenization of elliptic eigenvalue problems. I. (English) Zbl 0415.35061

MSC:
35P05 General topics in linear spectral theory for PDEs
35J15 Second-order elliptic equations
35B20 Perturbations in context of PDEs
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] K. J. Bathe and E. L. Wilson,Numerical Methods in Finite Element Analysis, Prentice Hall, Inc., 1976. · Zbl 0387.65069
[2] A. Bensoussan, J. L. Lions, and G. Papanicolaou,Asymptotic Methods in Periodic Structures, North-Holland, Amsterdam, 1978. · Zbl 0404.35001
[3] J. F. Bourgat and A. Dervieux, Méthode d’homogénéisation des opérateurs à coefficients périodiques: étude des correcteurs provenant du développement asymptotique,Rapport Laboria 278, (1978).
[4] J. F. Bourgat and H. Lanchon, Application of the Homogenization Method to Composite Materials with Periodic Structure,Rapport Laboria N\(\deg\) 208, 1976.
[5] R. Courant and D. Hilbert,Methods of Mathematical Physics, Interscience Publisher, Inc., New York, 1962. · Zbl 0099.29504
[6] E. de Giorgi and S. Spagnolo, Sulla Convergenzia degli integrali dell’ energia per operatori ellitici del 2\(\deg\) ordine,Boll. U. Mat. Ital., 8, 391-411, (1973). · Zbl 0274.35002
[7] S. Kesavan, Homogénéisation et Valeurs Propres,C.R.A.S. t. 285, Série A, 229-232, (Sep. 77). · Zbl 0364.35003
[8] G. Peters and J. H. Wilkinson, Eigenvalues ofAx=?Bx with Band SymmetricA andB, Computer Journal, 14, pp. 398-404, 1971.
[9] G. Strang and G. J. Fix,An Analysis of the Finite Element Method, Prentice Hall, Inc., 1973. · Zbl 0356.65096
[10] L. Tartar, Cours Peccot, Collège de France, Paris, Feb. 1977.
[11] J. P. Van de Wiele, Thèse de 3ème cycle, Univ. Pariv VI, 1974.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.