×

zbMATH — the first resource for mathematics

An existence theorem for the unmodified Vlasov equation. (English) Zbl 0415.35076

MSC:
35Q99 Partial differential equations of mathematical physics and other areas of application
82D10 Statistical mechanical studies of plasmas
85A05 Galactic and stellar dynamics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Arsen’ev, Global existence of a weak solution of Vlasov’s system of equations, U. S. S. R. comput. Math. and Math. Phys. 15 pp 131– (1975) · doi:10.1016/0041-5553(75)90141-X
[2] Batt, Ein Existenzbeweis fur die Vlasov-Gleichung der Stellardynamik bei gemittelter Dichte, Arch. Rat. Mech. Anal. 13 pp 296– (1963) · Zbl 0118.46601 · doi:10.1007/BF01262698
[3] Batt, Global Symmetric Solutions of the Initial Value Problem of Stellar Dynamics, J. of Diff. Equations 25 pp 342– (1977) · Zbl 0366.35020 · doi:10.1016/0022-0396(77)90049-3
[4] Billingsley, Convergence of Probability Measures (1968)
[5] Horst , E. Zum statistischen Anfangswertproblem der Stellardynamik 1975
[6] Horst , E. 1979
[7] Kurth, Das Anfangswertproblem der Stellardynamik, Z. Astrophys. 30 pp 213– (1952)
[8] Lax, Hyperbolic Systems of Conversation Laws II, Commun. on Pure and Appl. Math. X pp 537– (1957) · Zbl 0081.08803 · doi:10.1002/cpa.3160100406
[9] Neunzert , H. Mathematical Investigations on Particle-in-Cell Methods 1978
[10] Smirnov, Lehrgang der höheren Mathematik (1963)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.