×

zbMATH — the first resource for mathematics

\([\text{FIA}]^-_B\) Gruppen und Hypergruppen. (German) Zbl 0415.43009

MSC:
43A30 Fourier and Fourier-Stieltjes transforms on nonabelian groups and on semigroups, etc.
43A20 \(L^1\)-algebras on groups, semigroups, etc.
Citations:
Zbl 0325.42017
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Chilana, Ajit Kaur, andK. A. Ross: Spectral synthesis in hypergroups. Pacific J. Math.76, 313–328 (1978). · Zbl 0351.43009
[2] Eymard, P.: L’algèbre de Fourier d’un groupe localement compact. Bull. Soc. Math. France92, 181–236 (1964). · Zbl 0169.46403
[3] Hartmann, K., R. W. Henrichs, andR. Lasser: Duals of orbit spaces in groups with relatively compact inner automorphism groups are hypergroups. Mh. Math.88, 229–238 (1979). · Zbl 0416.22008
[4] Jewett, R. I.: Spaces with an abstract convolution of measures. Adv. Math.18, 1–101 (1975). · Zbl 0325.42017
[5] Kaniuth, E.: Zur harmonischen Analyse klassenkompakter Gruppen. Math. Z.110, 297–305 (1969). · Zbl 0176.11601
[6] Kaniuth, E., andG. Schlichting: Zur harmonischen Analyse klassenkompakter Gruppen II. Invent. Math.10, 332–345 (1970). · Zbl 0198.47703
[7] Kaniuth, E., andD. Steiner: On complete regularity of group algebras. Math. Ann.204, 305–329 (1973). · Zbl 0252.46056
[8] Liukonnen, J., andR. Mosak: Harmonic analysis and centers of group algebras. Trans. Amer. Math. Soc.195, 147–163 (1974). · Zbl 0292.22010
[9] Liukonnen, J., andR. Mosak: Harmonic analysis and centers of Beurling algebras. Comment. Math. Helvetici52, 297–315 (1977). · Zbl 0371.43008
[10] Mosak, R.: TheL 1- andC *-algebras of [FIA] B groups and their representations. Trans. Amer. Math. Soc.163, 277–310 (1972). · Zbl 0213.13601
[11] Ross, K. A.: Centers of hypergroups. Trans. Amer. Math. Soc.243, 251–269 (1978). · Zbl 0349.43002
[12] Spector, R.: Measures invariantes sur les hypergroupes. Trans. Amer. Math. Soc.239, 147–165 (1978). · Zbl 0428.43001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.