Janovsky, Vladimir; Prochazka, Petr Convergence analysis of a nonconforming finite element method solving a plate with ribs. (English) Zbl 0415.73085 Apl. Mat. 23, 9-30 (1978). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 1 Document MSC: 74S05 Finite element methods applied to problems in solid mechanics 65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs Keywords:clamped rectangular plate; intersecting ribs; irregularity; convergence; error estimates; numerical computations; finite element methods PDF BibTeX XML Cite \textit{V. Janovsky} and \textit{P. Prochazka}, Apl. Mat. 23, 9--30 (1978; Zbl 0415.73085) Full Text: EuDML OpenURL References: [1] Janovský V., Procházka P.: The nonconforming finite element method in the problem of clamped plate with ribs. Aplikace matematiky 21, (1976), 273 - 289. [2] Lions J. L., Magenes E.: Problèmes aux limites non homogènes et applications. Dunod, Paris, Vol. 1 (1968). · Zbl 0165.10801 [3] Kondratěv V. A.: Boundary value problem for elliptic equations in domains with conical or angular points. (Russian) Trudy Mosk. Mat. Obšč. 16, (1967), 209-292. [4] Nečas J.: Les methodes directes en théorie des équations elliptiques. Academia, Prague 1967. [5] Jakovlev G. N.: Boundary properties of functions from \(W_p^{(1)} on domains with angular points. (Russian) Dokl. Akad. Nauk SSSR 140, (1961), 73-76.\) [6] Kolář V., et al.: Technical, Physical and Mathematical Principles of the Finite Element Method. Rozpravy ČSAV, Academia Praha, 1971, 81, 2. [7] Křístek V.: Theory of solution of box girders. SNTL Praha, 1974) [8] Kovář A.: Theory of torsion. Academia, Praha 1954) [9] Zienkiewicz O. C.: The Finite Element Method in Engineering Science. McGraw-Hill, London, 1971. · Zbl 0237.73071 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.